Sangeeta Goswami, Kristen E. Pauken, Linghua Wang, Padmanee Sharma
{"title":"Next-generation combination approaches for immune checkpoint therapy","authors":"Sangeeta Goswami, Kristen E. Pauken, Linghua Wang, Padmanee Sharma","doi":"10.1038/s41590-024-02015-4","DOIUrl":null,"url":null,"abstract":"Immune checkpoint therapy has revolutionized cancer treatment, leading to dramatic clinical outcomes for a subset of patients. However, many patients do not experience durable responses following immune checkpoint therapy owing to multiple resistance mechanisms, highlighting the need for effective combination strategies that target these resistance pathways and improve clinical responses. The development of combination strategies based on an understanding of the complex biology that regulates human antitumor immune responses has been a major challenge. In this Review, we describe the current landscape of combination therapies. We also discuss how the development of effective combination strategies will require the integration of small, tissue-rich clinical trials, to determine how therapy-driven perturbation of the human immune system affects downstream biological responses and eventual clinical outcomes, reverse translation of clinical observations to immunocompetent preclinical models, to interrogate specific biological pathways and their impact on antitumor immune responses, and novel computational methods and machine learning, to integrate multiple datasets across clinical and preclinical studies for the identification of the most relevant pathways that need to be targeted for successful combination strategies. In this Review, Sharma and colleagues describe the current landscape of combination therapies and discuss requirements for the development of effective combination strategies.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"25 12","pages":"2186-2199"},"PeriodicalIF":27.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-024-02015-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint therapy has revolutionized cancer treatment, leading to dramatic clinical outcomes for a subset of patients. However, many patients do not experience durable responses following immune checkpoint therapy owing to multiple resistance mechanisms, highlighting the need for effective combination strategies that target these resistance pathways and improve clinical responses. The development of combination strategies based on an understanding of the complex biology that regulates human antitumor immune responses has been a major challenge. In this Review, we describe the current landscape of combination therapies. We also discuss how the development of effective combination strategies will require the integration of small, tissue-rich clinical trials, to determine how therapy-driven perturbation of the human immune system affects downstream biological responses and eventual clinical outcomes, reverse translation of clinical observations to immunocompetent preclinical models, to interrogate specific biological pathways and their impact on antitumor immune responses, and novel computational methods and machine learning, to integrate multiple datasets across clinical and preclinical studies for the identification of the most relevant pathways that need to be targeted for successful combination strategies. In this Review, Sharma and colleagues describe the current landscape of combination therapies and discuss requirements for the development of effective combination strategies.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.