Lifei He, Yuyan Zhang, Bing Zhang, Yanfei Mu, Niansheng Xu, Yaohang Cai, Yi Yuan, Jing Zhang, Min Zhang, Peng Wang
{"title":"Triphenylamine-ethylenedioxythiophene copolymers for perovskite solar cells: impact of substituent type and alternation","authors":"Lifei He, Yuyan Zhang, Bing Zhang, Yanfei Mu, Niansheng Xu, Yaohang Cai, Yi Yuan, Jing Zhang, Min Zhang, Peng Wang","doi":"10.1039/d4ee03316g","DOIUrl":null,"url":null,"abstract":"Developing cost-efficient p-type polymeric semiconductors with superior quality factors, such as energy levels, hole transport, and mechanical properties, is crucial for enhancing the performance of n-i-p perovskite solar cells. In this study, we synthesized three triphenylamine-ethylenedioxythiophene alternating copolymers via direct arylation polycondensation. The first polymer features three methyl groups on the non-main chain phenyl rings, the second has one 2-octyldodecyloxy group, and the third incorporates a combination of half three methyl groups and half one 2-octyldodecyloxy group. Variations and combinations of these substituents resulted in differences in molecular weights, glass transition temperatures, highest occupied molecular orbital energy levels, and film morphologies. Compared to reference polymers with only one type of substituent, the synergistic use of different substituents led to polymeric semiconductor composite films with smoother morphology and higher conductivity. Utilizing this uniquely substituted p-type polymeric semiconductor, we fabricated perovskite solar cells with an average power conversion efficiency of 25.4%. These cells exhibited excellent stability under thermal storage at 85 oC and operational conditions at 45 oC.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"7 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03316g","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing cost-efficient p-type polymeric semiconductors with superior quality factors, such as energy levels, hole transport, and mechanical properties, is crucial for enhancing the performance of n-i-p perovskite solar cells. In this study, we synthesized three triphenylamine-ethylenedioxythiophene alternating copolymers via direct arylation polycondensation. The first polymer features three methyl groups on the non-main chain phenyl rings, the second has one 2-octyldodecyloxy group, and the third incorporates a combination of half three methyl groups and half one 2-octyldodecyloxy group. Variations and combinations of these substituents resulted in differences in molecular weights, glass transition temperatures, highest occupied molecular orbital energy levels, and film morphologies. Compared to reference polymers with only one type of substituent, the synergistic use of different substituents led to polymeric semiconductor composite films with smoother morphology and higher conductivity. Utilizing this uniquely substituted p-type polymeric semiconductor, we fabricated perovskite solar cells with an average power conversion efficiency of 25.4%. These cells exhibited excellent stability under thermal storage at 85 oC and operational conditions at 45 oC.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).