Shixian Zhang, Wang Sun, Chunming Xu, Rongzheng Ren, Jinshuo Qiao, Zhenhua Wang, Kening Sun
{"title":"An Efficient Tri-Conductive Electrode for Ethane Direct Electrochemical Dehydrogenation on Proton Ceramic Electrolysis Cells","authors":"Shixian Zhang, Wang Sun, Chunming Xu, Rongzheng Ren, Jinshuo Qiao, Zhenhua Wang, Kening Sun","doi":"10.1002/smll.202409452","DOIUrl":null,"url":null,"abstract":"The preparation of ethylene from ethane, a main component of shale gas, has become an important process of the petrochemical industry, using ethane steam cracking at high temperatures (>900 °C), which is a highly energy intensive industry. Here, direct dehydrogenation of ethane is engineered electrochemically to produce ethylene and hydrogen in a proton-conducting electrolysis cell, achieving over 50% ethane conversion and 90.42% ethylene selectivity at 700 °C. On the basis of constructing NiCu bimetallic alloy nano-catalyst on the surface of perovskite Sr<sub>3</sub>Fe<sub>2</sub>O<sub>7</sub>, Hafnium (Hf) element is doped in the bulk phase to improve proton conductivity, establish triple conductivity, and achieve efficient directional conversion of ethane. The carbon dioxide reduction reaction at the cathode is further coupled, resulting in a higher conversion of ethane on the anode side and the production of syngas on the cathode side. This electrochemical reaction process provides a choice for the clean production of high value-added small molecule chemical products.","PeriodicalId":228,"journal":{"name":"Small","volume":"38 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of ethylene from ethane, a main component of shale gas, has become an important process of the petrochemical industry, using ethane steam cracking at high temperatures (>900 °C), which is a highly energy intensive industry. Here, direct dehydrogenation of ethane is engineered electrochemically to produce ethylene and hydrogen in a proton-conducting electrolysis cell, achieving over 50% ethane conversion and 90.42% ethylene selectivity at 700 °C. On the basis of constructing NiCu bimetallic alloy nano-catalyst on the surface of perovskite Sr3Fe2O7, Hafnium (Hf) element is doped in the bulk phase to improve proton conductivity, establish triple conductivity, and achieve efficient directional conversion of ethane. The carbon dioxide reduction reaction at the cathode is further coupled, resulting in a higher conversion of ethane on the anode side and the production of syngas on the cathode side. This electrochemical reaction process provides a choice for the clean production of high value-added small molecule chemical products.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.