Tailoring high-performance bipolar membrane for durable pure water electrolysis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weisheng Yu, Zirui Zhang, Fen Luo, Xiaojiang Li, Fanglin Duan, Yan Xu, Zhiru Liu, Xian Liang, Yaoming Wang, Liang Wu, Tongwen Xu
{"title":"Tailoring high-performance bipolar membrane for durable pure water electrolysis","authors":"Weisheng Yu, Zirui Zhang, Fen Luo, Xiaojiang Li, Fanglin Duan, Yan Xu, Zhiru Liu, Xian Liang, Yaoming Wang, Liang Wu, Tongwen Xu","doi":"10.1038/s41467-024-54514-5","DOIUrl":null,"url":null,"abstract":"<p>Bipolar membrane electrolyzers present an attractive scenario for concurrently optimizing the pH environment required for paired electrode reactions. However, the practicalization of bipolar membranes for water electrolysis has been hindered by their sluggish water dissociation kinetics, poor mass transport, and insufficient interface durability. This study starts with numerical simulations and discloses the limiting factors of monopolar membrane layer engineering. On this foundation, we tailor flexible bipolar membranes (10 <span>∼</span> 40 µm) comprising anion and cation exchange layers with an identical poly(terphenyl alkylene) polymeric skeleton. Rapid mass transfer properties and high compatibility of the monopolar membrane layers endow the bipolar membrane with appreciable water dissociation efficiency and long-term stability. Incorporating the bipolar membrane into a flow-cell electrolyzer enables an ampere-level pure water electrolysis with a total voltage of 2.68 V at 1000 mA cm<sup>–2</sup>, increasing the energy efficiency to twice that of the state-of-the-art commercial BPM. Furthermore, the bipolar membrane realizes a durability of 1000 h at high current densities of 300 <span>∼</span> 500 mA cm<sup>–2</sup> with negligible performance decay.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54514-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bipolar membrane electrolyzers present an attractive scenario for concurrently optimizing the pH environment required for paired electrode reactions. However, the practicalization of bipolar membranes for water electrolysis has been hindered by their sluggish water dissociation kinetics, poor mass transport, and insufficient interface durability. This study starts with numerical simulations and discloses the limiting factors of monopolar membrane layer engineering. On this foundation, we tailor flexible bipolar membranes (10  40 µm) comprising anion and cation exchange layers with an identical poly(terphenyl alkylene) polymeric skeleton. Rapid mass transfer properties and high compatibility of the monopolar membrane layers endow the bipolar membrane with appreciable water dissociation efficiency and long-term stability. Incorporating the bipolar membrane into a flow-cell electrolyzer enables an ampere-level pure water electrolysis with a total voltage of 2.68 V at 1000 mA cm–2, increasing the energy efficiency to twice that of the state-of-the-art commercial BPM. Furthermore, the bipolar membrane realizes a durability of 1000 h at high current densities of 300  500 mA cm–2 with negligible performance decay.

Abstract Image

为持久纯水电解量身定制高性能双极膜
双极膜电解器为同时优化成对电极反应所需的 pH 值环境提供了一个极具吸引力的方案。然而,双极膜在水电解方面的实用化一直受到其缓慢的水解离动力学、质量传输差和界面耐久性不足的阻碍。本研究从数值模拟入手,揭示了单极膜层工程的限制因素。在此基础上,我们定制了柔性双极膜(10 ∼ 40 µm),由阴阳离子交换层和阳离子交换层组成,具有相同的聚(三联苯烯)聚合物骨架。单极膜层的快速传质特性和高兼容性使双极膜具有显著的水解离效率和长期稳定性。将双极性膜集成到流池电解器中,可在 1000 mA cm-2 的条件下以 2.68 V 的总电压进行安培级纯水电解,将能效提高到最先进的商用 BPM 的两倍。此外,双极膜还能在 300 ∼ 500 mA cm-2 的高电流密度下实现 1000 小时的耐用性,性能衰减几乎可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信