Low Area Specific Resistance La-Doped Bi2O3 Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Adam J. Lovett, Matthew P. Wells, Yizhi Zhang, Jiawei Song, Thomas S. Miller, Haiyan Wang, Judith L. MacManus-Driscoll
{"title":"Low Area Specific Resistance La-Doped Bi2O3 Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications","authors":"Adam J. Lovett, Matthew P. Wells, Yizhi Zhang, Jiawei Song, Thomas S. Miller, Haiyan Wang, Judith L. MacManus-Driscoll","doi":"10.1021/acs.nanolett.4c03679","DOIUrl":null,"url":null,"abstract":"In the context of solid oxide fuel cells (SOFCs), vertically aligned nanocomposite (VAN) thin films have emerged as a leading material type to overcome performance limitations in cathodes. Such VAN films combine conventional cathodes like La<sub><i>x</i></sub>Sr<sub>1–<i>x</i></sub>Co<sub><i>y</i></sub>Fe<sub>1–<i>y</i></sub>O<sub>3</sub> (LSCF) and La<sub>1–x</sub>Sr<sub><i>x</i></sub>MnO<sub>3</sub> (LSM) together with highly O<sup>2–</sup> ionic conducting materials including yttria-stabilized zirconia (YSZ) or doped CeO<sub>2</sub>. Next-generation SOFCs will benefit from the exceptionally high ionic conductivity (1 S cm<sup>–1</sup> at 730 °C) of Bi<sub>2</sub>O<sub>3</sub>-based materials. Therefore, an opportunity exists to develop Bi<sub>2</sub>O<sub>3</sub>-based VAN cathodes. Herein, we present the first growth and characterization of a Bi<sub>2</sub>O<sub>3</sub>-based VAN cathode, containing epitaxial La-doped Bi<sub>2</sub>O<sub>3</sub> (LDBO) columns embedded in a LSM matrix. Our novel VANs exhibit low area specific resistance (ASR) (8.3 Ω cm<sup>2</sup> at 625 °C), representing ∼3 orders of magnitude reduction compared to planar LSM. Therefore, by demonstrating a high-performance Bi<sub>2</sub>O<sub>3</sub>-based cathode, this work provides an important foundation for future Bi<sub>2</sub>O<sub>3</sub>-based VAN SOFCs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"3 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03679","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of solid oxide fuel cells (SOFCs), vertically aligned nanocomposite (VAN) thin films have emerged as a leading material type to overcome performance limitations in cathodes. Such VAN films combine conventional cathodes like LaxSr1–xCoyFe1–yO3 (LSCF) and La1–xSrxMnO3 (LSM) together with highly O2– ionic conducting materials including yttria-stabilized zirconia (YSZ) or doped CeO2. Next-generation SOFCs will benefit from the exceptionally high ionic conductivity (1 S cm–1 at 730 °C) of Bi2O3-based materials. Therefore, an opportunity exists to develop Bi2O3-based VAN cathodes. Herein, we present the first growth and characterization of a Bi2O3-based VAN cathode, containing epitaxial La-doped Bi2O3 (LDBO) columns embedded in a LSM matrix. Our novel VANs exhibit low area specific resistance (ASR) (8.3 Ω cm2 at 625 °C), representing ∼3 orders of magnitude reduction compared to planar LSM. Therefore, by demonstrating a high-performance Bi2O3-based cathode, this work provides an important foundation for future Bi2O3-based VAN SOFCs.

Abstract Image

用于固体氧化物燃料电池的低面积比电阻 La 掺杂 Bi2O3 纳米复合薄膜阴极
在固体氧化物燃料电池(SOFC)方面,垂直排列纳米复合(VAN)薄膜已成为克服阴极性能限制的主要材料类型。这种 VAN 薄膜将 LaxSr1-xCoyFe1-yO3 (LSCF) 和 La1-xSrxMnO3 (LSM) 等传统阴极与包括钇稳定氧化锆 (YSZ) 或掺杂 CeO2 在内的高 O2- 离子导电材料结合在一起。下一代 SOFC 将受益于基于 Bi2O3 材料的超高离子导电性(730 °C 时为 1 S cm-1)。因此,开发基于 Bi2O3 的 VAN 阴极是一个机会。在此,我们首次展示了基于 Bi2O3 的 VAN 阴极的生长和表征,这种阴极包含嵌入 LSM 基质中的外延 La 掺杂 Bi2O3 (LDBO) 柱。我们的新型 VAN 具有较低的面积比电阻 (ASR)(625 ℃ 时为 8.3 Ω cm2),与平面 LSM 相比降低了 3 个数量级。因此,通过展示基于 Bi2O3 的高性能阴极,这项工作为未来基于 Bi2O3 的 VAN SOFC 奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信