Microstructure observation of T-phase in Al-Zn-Mg alloy with low Zn/Mg ratio

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Abrar Ahmed, Kenji Matsuda, Seungwon Lee, Taiki Tsuchiya, Katsuhiko Nishimura, Norio Numomura, Hiroyuki Toda, Kyosuke Hirayama, Kazuyuki Shimizu, Masatake Yamaguchi, Tomohito Tsuru
{"title":"Microstructure observation of T-phase in Al-Zn-Mg alloy with low Zn/Mg ratio","authors":"Abrar Ahmed, Kenji Matsuda, Seungwon Lee, Taiki Tsuchiya, Katsuhiko Nishimura, Norio Numomura, Hiroyuki Toda, Kyosuke Hirayama, Kazuyuki Shimizu, Masatake Yamaguchi, Tomohito Tsuru","doi":"10.1016/j.jallcom.2024.177781","DOIUrl":null,"url":null,"abstract":"For the first time, this study clarifies the interface of the T'', T', and T-phase in Al-Zn-Mg alloy with a low Zn/Mg ratio and evaluates the shape of the precipitate morphology according to different zone directions of the Al matrix. The orientation relationship, shape, misfit, and interfacial conditions between the T'', T', and T-phase and the Al matrix were investigated using high-resolution transmission electron microscopy (HR-TEM). We differentiated the T'' (<em>a</em> =1.387<!-- --> <!-- -->nm), T' (<em>a</em> =1.422<!-- --> <!-- -->nm), and T (<em>a</em> =1.456<!-- --> <!-- -->nm) phase by calculating the lattice parameters in HR-TEM images. We also identified the T'', T', and T-phase by diffraction patterns along the &lt;100&gt;, &lt;110&gt;, &lt;111&gt;, and &lt;112&gt; zone directions of the Al matrix. Additionally, we introduce the different orientation relationships of the T-phase with the Al matrix, The [<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;11&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 1001 997.6\" width=\"2.325ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(279,189)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">11</mn></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">11</mn></mrow><mo is=\"true\">̅</mo></mover></math></script></span>0] zone direction of the Al is parallel to the [<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 500.5 997.6\" width=\"1.162ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-33\"></use></g></g><g is=\"true\" transform=\"translate(29,188)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover></math></script></span>20] direction of the T-phase, and the plane of (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;11&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 1001 997.6\" width=\"2.325ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(279,189)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">11</mn></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">11</mn></mrow><mo is=\"true\">̅</mo></mover></math></script></span>1) of the Al is parallel to the plane of (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn is=\"true\"&gt;11&lt;/mn&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 1501.5 997.6\" width=\"3.487ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1001,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(29,189)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn is=\"true\">11</mn><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mn is=\"true\">11</mn><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mo is=\"true\">̅</mo></mover></math></script></span>) of the T-phase. Among Al alloys, the 7xxx series is known for its superior strength due to the co-precipitation of the η and T-phase. While previous research has extensively examined the precipitation sequence, composition, atomic structure, and phase transformation mechanisms of the η-phase, the T-phase has received less attention. Our observations provide insight into the behavior of T-phase crystals, which is crucial for understanding the microstructural evolution of Al-Zn-Mg alloys and for designing materials with desired properties.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"71 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177781","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, this study clarifies the interface of the T'', T', and T-phase in Al-Zn-Mg alloy with a low Zn/Mg ratio and evaluates the shape of the precipitate morphology according to different zone directions of the Al matrix. The orientation relationship, shape, misfit, and interfacial conditions between the T'', T', and T-phase and the Al matrix were investigated using high-resolution transmission electron microscopy (HR-TEM). We differentiated the T'' (a =1.387 nm), T' (a =1.422 nm), and T (a =1.456 nm) phase by calculating the lattice parameters in HR-TEM images. We also identified the T'', T', and T-phase by diffraction patterns along the <100>, <110>, <111>, and <112> zone directions of the Al matrix. Additionally, we introduce the different orientation relationships of the T-phase with the Al matrix, The [11̅0] zone direction of the Al is parallel to the [3̅20] direction of the T-phase, and the plane of (11̅1) of the Al is parallel to the plane of (112̅) of the T-phase. Among Al alloys, the 7xxx series is known for its superior strength due to the co-precipitation of the η and T-phase. While previous research has extensively examined the precipitation sequence, composition, atomic structure, and phase transformation mechanisms of the η-phase, the T-phase has received less attention. Our observations provide insight into the behavior of T-phase crystals, which is crucial for understanding the microstructural evolution of Al-Zn-Mg alloys and for designing materials with desired properties.

Abstract Image

低锌镁比 Al-Zn-Mg 合金中 T 相的显微组织观察
本研究首次阐明了低锌镁比铝锌镁合金中 T''、T''和 T 相的界面,并根据铝基体的不同区域方向评估了沉淀形态的形状。我们使用高分辨率透射电子显微镜(HR-TEM)研究了 T''、T''和 T 相与铝基体之间的取向关系、形状、错位和界面条件。我们通过计算 HR-TEM 图像中的晶格参数来区分 T''(a =1.387 nm)、T'(a =1.422 nm)和 T(a =1.456 nm)相。我们还通过沿铝基体的<100>、<110>、<111>和<112>区方向的衍射图样确定了T''、T''和T相。此外,我们还介绍了 T 相与铝基体的不同取向关系、Al的[̅11̅11̅0]区方向平行于T相的[̅3̅3̅20]方向,Al的(̅11̅11̅1)平面平行于T相的(̅112̅112̅)平面。在铝合金中,7xxx 系列因 η 相和 T 相的共沉淀而具有超强的强度。以往的研究广泛考察了 η 相的沉淀顺序、成分、原子结构和相变机制,但对 T 相的关注较少。我们的观察结果提供了对 T 相晶体行为的深入了解,这对于理解铝锌镁合金的微观结构演变和设计具有所需性能的材料至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信