{"title":"A chemical modification-free strategy for fabricating tough and tear-resistant natural rubber/polysaccharide material","authors":"Shaoqi Huang, Junqi Zhang, Lingmin Kong, Zheng-Tian Xie, Jinrong Wu","doi":"10.1016/j.polymer.2024.127880","DOIUrl":null,"url":null,"abstract":"<div><div>Natural rubber latex (NRL) is widely used in a variety of products, including gloves, balloons, condoms, and foamed items like pillows and footwear components. However, the limitations of traditional NRL materials in terms of tear resistance and toughness restrict their use in high-end applications. Hence, developing tough and tear-resistant NRL materials using eco-friendly and user-friendly methods remains highly desirable. In this work, a chemical modification-free method is reported for the fabrication of tough and tear-resistant vulcanized natural rubber/carrageenan material (SNR/KC). KC is introduced into NRL via a modified latex mixing strategy, which can form hydrogen bonds with the non-rubber components (NRC) such as proteins on the surface of natural rubber latex particles. As a result, KC can be well dispersed and form a segregated network structure within the rubber matrix. The rigid filler network created by KC effectively impedes crack propagation and enhances energy dissipation during deformation. Furthermore, the presence of KC in the NR matrix fosters the strain-induced crystallization (SIC) of NR. All these contribute to the superior tear resistance and toughness of composite materials. With only 0.1 phr of KC, the composite exhibits a fracture toughness of 208.4 kJ/m<sup>2</sup> and a tear strength of 50 kN/m. This work demonstrated that the interaction between polysaccharide and NRC of NRL can be leveraged to fabricate tough and tear-resistant NR composites without any chemical modification and tedious process, favoring a green development and high-quality pursuit of NRL materials.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"316 ","pages":"Article 127880"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124012163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Natural rubber latex (NRL) is widely used in a variety of products, including gloves, balloons, condoms, and foamed items like pillows and footwear components. However, the limitations of traditional NRL materials in terms of tear resistance and toughness restrict their use in high-end applications. Hence, developing tough and tear-resistant NRL materials using eco-friendly and user-friendly methods remains highly desirable. In this work, a chemical modification-free method is reported for the fabrication of tough and tear-resistant vulcanized natural rubber/carrageenan material (SNR/KC). KC is introduced into NRL via a modified latex mixing strategy, which can form hydrogen bonds with the non-rubber components (NRC) such as proteins on the surface of natural rubber latex particles. As a result, KC can be well dispersed and form a segregated network structure within the rubber matrix. The rigid filler network created by KC effectively impedes crack propagation and enhances energy dissipation during deformation. Furthermore, the presence of KC in the NR matrix fosters the strain-induced crystallization (SIC) of NR. All these contribute to the superior tear resistance and toughness of composite materials. With only 0.1 phr of KC, the composite exhibits a fracture toughness of 208.4 kJ/m2 and a tear strength of 50 kN/m. This work demonstrated that the interaction between polysaccharide and NRC of NRL can be leveraged to fabricate tough and tear-resistant NR composites without any chemical modification and tedious process, favoring a green development and high-quality pursuit of NRL materials.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.