{"title":"Conserved region of human TDP-43 is structurally similar to membrane binding protein FARP1 and protein chaperons BAG6 and CYP33.","authors":"Ljiljana Sjekloća, Emanuele Buratti","doi":"10.17912/micropub.biology.001388","DOIUrl":null,"url":null,"abstract":"<p><p>Transactive response DNA-binding protein of 43 KDa (TDP-43) is important for RNA metabolism in all animals and in humans is involved in neuromuscular diseases. Full-length TDP-43 is prone to oligomerization and misfolding what renders difficult its characterization. We report that TDP-43 domains are structurally similar to lipid binding protein FARP1 and protein chaperons BAG6 and CYP33. Sequence analysis suggests putative lipid binding sites throughout TDP-43 and in vitro thioflavin T fluorescence assays show that cholesterol and phosphatidylcholine affect fibrillation of recombinant TDP-43 fragments. Our findings suggest that TDP-43 can bind lipids directly and it may contribute to its own chaperoning.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transactive response DNA-binding protein of 43 KDa (TDP-43) is important for RNA metabolism in all animals and in humans is involved in neuromuscular diseases. Full-length TDP-43 is prone to oligomerization and misfolding what renders difficult its characterization. We report that TDP-43 domains are structurally similar to lipid binding protein FARP1 and protein chaperons BAG6 and CYP33. Sequence analysis suggests putative lipid binding sites throughout TDP-43 and in vitro thioflavin T fluorescence assays show that cholesterol and phosphatidylcholine affect fibrillation of recombinant TDP-43 fragments. Our findings suggest that TDP-43 can bind lipids directly and it may contribute to its own chaperoning.