A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns.

Linrong Li, Wenxiang Liao, Hongliu Yu
{"title":"A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns.","authors":"Linrong Li, Wenxiang Liao, Hongliu Yu","doi":"10.1515/bmt-2024-0230","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Individuals change walking speed by regulating step frequency (SF), stride length (SL), or a combination of both (FL combinations). However, existing methods of walking speed estimation ignore this regulatory mechanism.</p><p><strong>Objectives: </strong>This paper aims to achieve accurate walking speed estimation while enabling adaptation to inter-individual speed regulation strategies.</p><p><strong>Methods: </strong>We first extracted thigh features closely related to individual speed regulation based on a single thigh mounted IMU. Next, an interval type-2 fuzzy inference system was used to infer and quantify the individuals' speed regulation intentions, enabling speed estimation independent of inter-individual gait patterns. Experiments with five subjects walking on a treadmill at different speeds and with different gait patterns validated our method.</p><p><strong>Results: </strong>The overall root mean square error (RMSE) for speed estimation was 0.0704 ± 0.0087 m/s, and the RMSE for different gait patterns was no more than 0.074 ± 0.005 m/s.</p><p><strong>Conclusions: </strong>The proposed method provides high-accuracy speed estimation. Moreover, our method can be adapted to different FL combinations without the need for individualised tuning or training of individuals with varying limb lengths and gait habits. We anticipate that the proposed method will help provide more intuitive speed adaptive control for rehabilitation robots, especially intelligent lower limb prostheses.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Individuals change walking speed by regulating step frequency (SF), stride length (SL), or a combination of both (FL combinations). However, existing methods of walking speed estimation ignore this regulatory mechanism.

Objectives: This paper aims to achieve accurate walking speed estimation while enabling adaptation to inter-individual speed regulation strategies.

Methods: We first extracted thigh features closely related to individual speed regulation based on a single thigh mounted IMU. Next, an interval type-2 fuzzy inference system was used to infer and quantify the individuals' speed regulation intentions, enabling speed estimation independent of inter-individual gait patterns. Experiments with five subjects walking on a treadmill at different speeds and with different gait patterns validated our method.

Results: The overall root mean square error (RMSE) for speed estimation was 0.0704 ± 0.0087 m/s, and the RMSE for different gait patterns was no more than 0.074 ± 0.005 m/s.

Conclusions: The proposed method provides high-accuracy speed estimation. Moreover, our method can be adapted to different FL combinations without the need for individualised tuning or training of individuals with varying limb lengths and gait habits. We anticipate that the proposed method will help provide more intuitive speed adaptive control for rehabilitation robots, especially intelligent lower limb prostheses.

基于第 2 类模糊推理的方法可根据个体间的步态模式估算步行速度。
导言个体通过调节步频(SF)、步长(SL)或两者的组合(FL组合)来改变步行速度。然而,现有的步行速度估算方法忽略了这一调节机制:本文旨在实现准确的步行速度估算,同时适应个体间的速度调节策略:我们首先根据安装在大腿上的单个 IMU 提取了与个体速度调节密切相关的大腿特征。方法:我们首先根据安装在大腿上的单个 IMU 提取了与个体速度调节密切相关的大腿特征,然后使用区间 2 型模糊推理系统推断并量化个体的速度调节意图,从而实现了独立于个体间步态模式的速度估算。五个受试者在跑步机上以不同速度和不同步态行走的实验验证了我们的方法:结果:速度估计的总体均方根误差(RMSE)为 0.0704 ± 0.0087 m/s,不同步态的均方根误差不超过 0.074 ± 0.005 m/s:结论:所提出的方法可提供高精度的速度估计。此外,我们的方法可适用于不同的 FL 组合,而无需对具有不同肢体长度和步态习惯的个体进行个性化调整或训练。我们预计,所提出的方法将有助于为康复机器人,尤其是智能下肢假肢提供更直观的速度自适应控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信