Emily Brown, Samantha Kuszynski, Faith Akoachere, James Feduccia, Lili Malatinszky, Eric S Luth
{"title":"Generation of an endogenous auxin inducible degron-tagged SPAS-1/spastin to investigate its targeted depletion in <i>C. elegans</i> neurons.","authors":"Emily Brown, Samantha Kuszynski, Faith Akoachere, James Feduccia, Lili Malatinszky, Eric S Luth","doi":"10.17912/micropub.biology.001328","DOIUrl":null,"url":null,"abstract":"<p><p>To facilitate investigations of the microtubule severing protein spastin and its specific role in neurons, we aimed to create a <i>C. elegans</i> strain in which the spastin homolog SPAS-1 is visible and can be degraded with spatial and temporal precision. We used CRISPR-Cas9 to fuse an auxin-inducible degron and mScarlet to the endogenous SPAS-1 protein, enabling degradation of SPAS-1 in neurons during desired life stages. DNA sequencing confirmed in-frame insertion with the SPAS-1 N-terminus and fluorescence microscopy revealed endogenous SPAS-1 throughout the CRISPR-edited worms. Auxin treatment in <i>rgef-1::TIR1; mScarlet::AID*::3xFLAG::spas-1</i> animals reduced mScarlet::SPAS-1 fluorescence in neuronal ganglia.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To facilitate investigations of the microtubule severing protein spastin and its specific role in neurons, we aimed to create a C. elegans strain in which the spastin homolog SPAS-1 is visible and can be degraded with spatial and temporal precision. We used CRISPR-Cas9 to fuse an auxin-inducible degron and mScarlet to the endogenous SPAS-1 protein, enabling degradation of SPAS-1 in neurons during desired life stages. DNA sequencing confirmed in-frame insertion with the SPAS-1 N-terminus and fluorescence microscopy revealed endogenous SPAS-1 throughout the CRISPR-edited worms. Auxin treatment in rgef-1::TIR1; mScarlet::AID*::3xFLAG::spas-1 animals reduced mScarlet::SPAS-1 fluorescence in neuronal ganglia.