Irfan Khan , Saif Ullah , Shakir Ullah , Niaz Ali , Zilli Huma , Sedat Yaşar , Siraj Khan , Rizwan Ul Haq , Amjad Khan , Imran Khan
{"title":"Antidepressant effects of SY-2476: A caffeine derivative’s role in A1/A2A gene expression modulation in corticosterone-induced depressed rats","authors":"Irfan Khan , Saif Ullah , Shakir Ullah , Niaz Ali , Zilli Huma , Sedat Yaşar , Siraj Khan , Rizwan Ul Haq , Amjad Khan , Imran Khan","doi":"10.1016/j.neulet.2024.138059","DOIUrl":null,"url":null,"abstract":"<div><div>Depression is a pervasive mood disorder that continues to challenge researchers and clinicians worldwide. Caffeine and its derivatives have been studied for their neuroprotective and antidepressant effect. Current study aimed to explore the potential antidepressant effect of a caffeine derivative, Sy-2476 [4-(1, 3, 7-trimethyl-2, 6-dioxo-2, 3, 6, 7-tetrahydro-1H-purin-8-yl) benzo nitrile], in corticosterone-induced rat model of depression. Depression-like behaviour in rats was induced by administering 20 mg/kg hydrocortisone s.c for 21 days. Behavioural studies evaluated the potential antidepressant effect of caffeine derivative Sy-2476, its effect on cortisol levels, modulation of A1/A2<sub>A</sub> receptors mRNA expression and antioxidant assays. Treatment of rats with Sy-2476 exhibited robust antidepressant-like effects in corticosterone-exposed rats by increasing sucrose preference (p = 0.0002) while reducing immobility time (p = 0.0118) in the forced swim test. Sy-2476 also reduced lipid peroxidation and increased the level of antioxidant enzymes, including glutathione, catalase, and superoxide dismutase. Moreover, Sy-2476 significantly lowered cortisol levels (p = 0.0019) and up-regulated mRNA expression of A1 (p = 0.0001) and A2<sub>A</sub> receptors (p = 0.0016) compared to the corticosterone-only treated group. In conclusion, Sy-2476 showed an antidepressant effect primarily by suppressing serum cortisol levels, modulating the expression of adenosine receptors, and exhibiting antioxidant properties.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"845 ","pages":"Article 138059"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004385","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a pervasive mood disorder that continues to challenge researchers and clinicians worldwide. Caffeine and its derivatives have been studied for their neuroprotective and antidepressant effect. Current study aimed to explore the potential antidepressant effect of a caffeine derivative, Sy-2476 [4-(1, 3, 7-trimethyl-2, 6-dioxo-2, 3, 6, 7-tetrahydro-1H-purin-8-yl) benzo nitrile], in corticosterone-induced rat model of depression. Depression-like behaviour in rats was induced by administering 20 mg/kg hydrocortisone s.c for 21 days. Behavioural studies evaluated the potential antidepressant effect of caffeine derivative Sy-2476, its effect on cortisol levels, modulation of A1/A2A receptors mRNA expression and antioxidant assays. Treatment of rats with Sy-2476 exhibited robust antidepressant-like effects in corticosterone-exposed rats by increasing sucrose preference (p = 0.0002) while reducing immobility time (p = 0.0118) in the forced swim test. Sy-2476 also reduced lipid peroxidation and increased the level of antioxidant enzymes, including glutathione, catalase, and superoxide dismutase. Moreover, Sy-2476 significantly lowered cortisol levels (p = 0.0019) and up-regulated mRNA expression of A1 (p = 0.0001) and A2A receptors (p = 0.0016) compared to the corticosterone-only treated group. In conclusion, Sy-2476 showed an antidepressant effect primarily by suppressing serum cortisol levels, modulating the expression of adenosine receptors, and exhibiting antioxidant properties.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.