{"title":"LNC-ing Genetics in Mitochondrial Disease.","authors":"Rick Kamps, Emma Louise Robinson","doi":"10.3390/ncrna10060057","DOIUrl":null,"url":null,"abstract":"<p><p>Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), Leber's hereditary optic neuropathy (LHON), Leigh syndrome (LS), Kearns-Sayre syndrome (KSS), and myoclonic epilepsy and ragged-red fiber disease (MERRF). Additionally, secondary mitochondrial dysfunction has been implicated in the most common current causes of mortality and morbidity, including cardiovascular disease (CVD) and cancer. Identifying key genetic contributors to both MD and secondary mitochondrial dysfunction may guide clinicians to assess the most effective treatment course and prognosis, as well as informing family members of any hereditary risk of disease transmission. Identifying underlying genetic causes of primary and secondary MD involves either genome sequencing (GS) or small targeted panel analysis of known disease-causing nuclear- or mitochondrial genes coding for mitochondria-related proteins. Due to advances in GS, the importance of long non-coding RNA (lncRNA) as functional contributors to the pathophysiology of MD is being unveiled. A limited number of studies have thus far reported the importance of lncRNAs in relation to MD causation and progression, and we are entering a new area of attention for clinical geneticists in specific rare malignancies. This commentary provides an overview of what is known about the role of lncRNAs as genetic and molecular contributors to disease pathophysiology and highlights an unmet need for a deeper understanding of mitochondrial dysfunction in serious human disease burdens.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"10 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10060057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), Leber's hereditary optic neuropathy (LHON), Leigh syndrome (LS), Kearns-Sayre syndrome (KSS), and myoclonic epilepsy and ragged-red fiber disease (MERRF). Additionally, secondary mitochondrial dysfunction has been implicated in the most common current causes of mortality and morbidity, including cardiovascular disease (CVD) and cancer. Identifying key genetic contributors to both MD and secondary mitochondrial dysfunction may guide clinicians to assess the most effective treatment course and prognosis, as well as informing family members of any hereditary risk of disease transmission. Identifying underlying genetic causes of primary and secondary MD involves either genome sequencing (GS) or small targeted panel analysis of known disease-causing nuclear- or mitochondrial genes coding for mitochondria-related proteins. Due to advances in GS, the importance of long non-coding RNA (lncRNA) as functional contributors to the pathophysiology of MD is being unveiled. A limited number of studies have thus far reported the importance of lncRNAs in relation to MD causation and progression, and we are entering a new area of attention for clinical geneticists in specific rare malignancies. This commentary provides an overview of what is known about the role of lncRNAs as genetic and molecular contributors to disease pathophysiology and highlights an unmet need for a deeper understanding of mitochondrial dysfunction in serious human disease burdens.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.