{"title":"[Semi-rational design improves the catalytic activity of butyrylcholinesterase against ghrelin].","authors":"Yingting Cai, Tianzhu Zhang, Fengyun Lin","doi":"10.13345/j.cjb.240185","DOIUrl":null,"url":null,"abstract":"<p><p>Ghrelin, a hormone mainly produced and released by the stomach, has numerous functions, including releasing growth hormones, regulating appetite, and processing sugar and lipids. Researchers have made great efforts to study the relationship between ghrelin and metabolic diseases. It is believed that human butyrylcholinesterase (hBChE) could hydrolyze ghrelin to the inactive form (desacyl-ghrelin). However, the low catalytic activity of wild hBChE against ghrelin hinders the clinical application. Recently, a soluble catalytically active hBChE mutant was successfully expressed in <i>Escherichia coli</i> for the first time. We then adopted HotSpot Wizard 3.0 to analyze the mutant structure and rationally selected 10 mutants. Furthermore, we determined the catalytic activities of the mutants against several substrates and the thermostability of these mutants. The results showed that the mutants E197D and A199S improved catalytic activity against ghrelin by 4.6 times and 3.5 times, respectively. The findings provide clues for treating endocrine diseases with the agents for regulating ghrelin.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4228-4241"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Ghrelin, a hormone mainly produced and released by the stomach, has numerous functions, including releasing growth hormones, regulating appetite, and processing sugar and lipids. Researchers have made great efforts to study the relationship between ghrelin and metabolic diseases. It is believed that human butyrylcholinesterase (hBChE) could hydrolyze ghrelin to the inactive form (desacyl-ghrelin). However, the low catalytic activity of wild hBChE against ghrelin hinders the clinical application. Recently, a soluble catalytically active hBChE mutant was successfully expressed in Escherichia coli for the first time. We then adopted HotSpot Wizard 3.0 to analyze the mutant structure and rationally selected 10 mutants. Furthermore, we determined the catalytic activities of the mutants against several substrates and the thermostability of these mutants. The results showed that the mutants E197D and A199S improved catalytic activity against ghrelin by 4.6 times and 3.5 times, respectively. The findings provide clues for treating endocrine diseases with the agents for regulating ghrelin.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.