{"title":"ADM-Loaded GelMA hydrogel promotes endogenous dental pulp regeneration: an in vitro and in vivo study.","authors":"Yangpeng Zhao, Qian Zhang, Song Zhang, Jianan Chen, Lingtong Kong, Jianyong Gao, Qiang Zhu","doi":"10.1016/j.joen.2024.11.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To prepare a GelMA hydrogel scaffold embedded with adrenomedullin (ADM) and investigate its impact and underlying mechanisms in endogenous pulp regeneration.</p><p><strong>Methods: </strong>ADM was evenly distributed within the GelMA hydrogel through a simple and conventional physical mixing technique. The scaffold underwent characterization via scanning electron microscopy, alongside assessments of swelling, degradation, and release properties. Biocompatibility was evaluated using cytoskeletal and live-dead staining techniques. The hydrogel's influence on dental pulp stem cells' proliferation, migration, and differentiation was assessed with CCK-8 assays, Transwell assays, and alizarin red and alkaline phosphatase (ALP) staining. Transcriptomics provided insights into potential mechanisms. The angiogenic effects on umbilical vein endothelial cells were examined using scratch and tube formation assays. In vivo, the composite hydrogel's regenerative capacity was tested in a rat model of pulp regeneration. Statistical analysis involved Student's t-test and one-way ANOVA, with significance set at P<0.05.</p><p><strong>Results: </strong>The ADM-loaded GelMA hydrogel (GelMA@ADM) displayed a porous architecture under electron microscopy conducive to cell adhesion and demonstrated excellent biocompatibility. In vitro experiments showed that GelMA@ADM significantly boosted dental pulp stem cells' migration, proliferation, and differentiation, and enhanced the angiogenic activity of umbilical vein endothelial cells after one week of treatment. Corresponding in vivo experiments revealed that GelMA@ADM facilitated the formation of new vascularized pulp tissue after two weeks of treatment.</p><p><strong>Conclusion: </strong>The GelMA@ADM hydrogel effectively promotes dental pulp stem cells' proliferation and differentiation, augments vascularization by umbilical vein endothelial cells, and fosters the creation of new vascularized pulp tissue. These findings underscore the potential of GelMA@ADM hydrogel for endogenous pulp regeneration.</p>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.joen.2024.11.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To prepare a GelMA hydrogel scaffold embedded with adrenomedullin (ADM) and investigate its impact and underlying mechanisms in endogenous pulp regeneration.
Methods: ADM was evenly distributed within the GelMA hydrogel through a simple and conventional physical mixing technique. The scaffold underwent characterization via scanning electron microscopy, alongside assessments of swelling, degradation, and release properties. Biocompatibility was evaluated using cytoskeletal and live-dead staining techniques. The hydrogel's influence on dental pulp stem cells' proliferation, migration, and differentiation was assessed with CCK-8 assays, Transwell assays, and alizarin red and alkaline phosphatase (ALP) staining. Transcriptomics provided insights into potential mechanisms. The angiogenic effects on umbilical vein endothelial cells were examined using scratch and tube formation assays. In vivo, the composite hydrogel's regenerative capacity was tested in a rat model of pulp regeneration. Statistical analysis involved Student's t-test and one-way ANOVA, with significance set at P<0.05.
Results: The ADM-loaded GelMA hydrogel (GelMA@ADM) displayed a porous architecture under electron microscopy conducive to cell adhesion and demonstrated excellent biocompatibility. In vitro experiments showed that GelMA@ADM significantly boosted dental pulp stem cells' migration, proliferation, and differentiation, and enhanced the angiogenic activity of umbilical vein endothelial cells after one week of treatment. Corresponding in vivo experiments revealed that GelMA@ADM facilitated the formation of new vascularized pulp tissue after two weeks of treatment.
Conclusion: The GelMA@ADM hydrogel effectively promotes dental pulp stem cells' proliferation and differentiation, augments vascularization by umbilical vein endothelial cells, and fosters the creation of new vascularized pulp tissue. These findings underscore the potential of GelMA@ADM hydrogel for endogenous pulp regeneration.
期刊介绍:
The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.