Protective effects of phosphocreatine against Doxorubicin-Induced cardiotoxicity through mitochondrial function enhancement and apoptosis suppression via AMPK/PGC-1α signaling pathway
Eskandar Qaed , Marwan almoiliqy , Wu Liu , Haitham Saad Al-mashriqi , Eman Alyafeai , Waleed Aldahmash , Mueataz A. Mahyoub , Zeyao Tang
{"title":"Protective effects of phosphocreatine against Doxorubicin-Induced cardiotoxicity through mitochondrial function enhancement and apoptosis suppression via AMPK/PGC-1α signaling pathway","authors":"Eskandar Qaed , Marwan almoiliqy , Wu Liu , Haitham Saad Al-mashriqi , Eman Alyafeai , Waleed Aldahmash , Mueataz A. Mahyoub , Zeyao Tang","doi":"10.1016/j.intimp.2024.113677","DOIUrl":null,"url":null,"abstract":"<div><div>Doxorubicin (DOX), a potent chemotherapy drug, is limited by its cardiotoxic effects, which can lead to heart damage. This study explores the cardioprotective potential of Phosphocreatine (PCr) in vitro and in vivo models, focusing on its impact on the AMPK and PGC-1α pathways, apoptosis reduction, and mitochondrial function preservation. Advanced methodologies, including high-resolution respirometry (HRR), were employed to assess mitochondrial bioenergetics, AMPK activity, and apoptotic rates in cardiomyocytes. Electrocardiography (ECG) and echocardiography (echo) were used to monitor cardiac function in vivo. Results showed that PCr significantly activated the AMPK and PGC-1α pathways, reduced apoptosis, and stabilized mitochondrial function in cardiomyocytes exposed to DOX. There was an upregulation of AMPK and PGC-1α target genes, stabilization of mitochondrial membranes, and improvements in cellular energy production and antioxidant defenses. PCr also markedly reduced apoptotic markers, enhancing cardiomyocyte viability. ECG and echocardiography revealed that PCr preserved cardiac function, indicated by improved heart rate variability, reduced QT interval prolongation, and enhanced ejection fraction. These findings highlight PCr’s potential in mitigating DOX-induced cardiotoxicity by enhancing mitochondrial function and reducing apoptosis. The study underscores the promise of PCr as an agent to reduce chemotherapy-related cardiac injuries, paving the way for further research to improve patient outcomes in cancer treatment.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"Article 113677"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924021994","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX), a potent chemotherapy drug, is limited by its cardiotoxic effects, which can lead to heart damage. This study explores the cardioprotective potential of Phosphocreatine (PCr) in vitro and in vivo models, focusing on its impact on the AMPK and PGC-1α pathways, apoptosis reduction, and mitochondrial function preservation. Advanced methodologies, including high-resolution respirometry (HRR), were employed to assess mitochondrial bioenergetics, AMPK activity, and apoptotic rates in cardiomyocytes. Electrocardiography (ECG) and echocardiography (echo) were used to monitor cardiac function in vivo. Results showed that PCr significantly activated the AMPK and PGC-1α pathways, reduced apoptosis, and stabilized mitochondrial function in cardiomyocytes exposed to DOX. There was an upregulation of AMPK and PGC-1α target genes, stabilization of mitochondrial membranes, and improvements in cellular energy production and antioxidant defenses. PCr also markedly reduced apoptotic markers, enhancing cardiomyocyte viability. ECG and echocardiography revealed that PCr preserved cardiac function, indicated by improved heart rate variability, reduced QT interval prolongation, and enhanced ejection fraction. These findings highlight PCr’s potential in mitigating DOX-induced cardiotoxicity by enhancing mitochondrial function and reducing apoptosis. The study underscores the promise of PCr as an agent to reduce chemotherapy-related cardiac injuries, paving the way for further research to improve patient outcomes in cancer treatment.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.