{"title":"Microcontroller-based water control system for evaluating crop water use characteristics.","authors":"Daisuke Sugiura, Shiro Mitsuya, Hirokazu Takahashi, Ryo Yamamoto, Yoshiyuki Miyazawa","doi":"10.1186/s13007-024-01305-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Climate change and the growing demand for agricultural water threaten global food security. Understanding water use characteristics of major crops from leaf to field scale is critical, particularly for identifying crop varieties with enhanced water-use efficiency (WUE) and stress tolerance. Traditional methods to assess WUE are either by gas exchange measurements at the leaf level or labor-intensive manual pot weighing at the whole-plant level, both of which have limited throughput.</p><p><strong>Results: </strong>Here, we developed a microcontroller-based low-cost system that integrates pot weighing, automated water supply, and real-time monitoring of plant water consumption via Wi-Fi. We validated the system using major crops (rice soybean, maize) under diverse stress conditions (salt, waterlogging, drought). Salt-tolerant rice maintained higher water consumption and growth under salinity than salt-sensitive rice. Waterlogged soybean exhibited reduced water use and growth. Long-term experiments revealed significant WUE differences between rice varieties and morphological adaptations represented by altered shoot-to-root ratios under constant drought conditions in maize.</p><p><strong>Conclusions: </strong>We demonstrate that the system can be used for varietal differences between major crops in their response to drought, waterlogging, and salinity stress. This system enables high-throughput, long-term evaluation of water use characteristics, facilitating the selection and development of water-saving and stress-tolerant crop varieties.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"179"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01305-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Climate change and the growing demand for agricultural water threaten global food security. Understanding water use characteristics of major crops from leaf to field scale is critical, particularly for identifying crop varieties with enhanced water-use efficiency (WUE) and stress tolerance. Traditional methods to assess WUE are either by gas exchange measurements at the leaf level or labor-intensive manual pot weighing at the whole-plant level, both of which have limited throughput.
Results: Here, we developed a microcontroller-based low-cost system that integrates pot weighing, automated water supply, and real-time monitoring of plant water consumption via Wi-Fi. We validated the system using major crops (rice soybean, maize) under diverse stress conditions (salt, waterlogging, drought). Salt-tolerant rice maintained higher water consumption and growth under salinity than salt-sensitive rice. Waterlogged soybean exhibited reduced water use and growth. Long-term experiments revealed significant WUE differences between rice varieties and morphological adaptations represented by altered shoot-to-root ratios under constant drought conditions in maize.
Conclusions: We demonstrate that the system can be used for varietal differences between major crops in their response to drought, waterlogging, and salinity stress. This system enables high-throughput, long-term evaluation of water use characteristics, facilitating the selection and development of water-saving and stress-tolerant crop varieties.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.