Monserrat Castañeda-Juárez, Ivonne Linares-Hernández, Verónica Martínez-Miranda, Elia Alejandra Teutli-Sequeira, Miroslava de Los Ángeles Mier-Quiroga, Luis Antonio Castillo-Suárez
{"title":"Commercial dexamethasone degradation by heterogeneous sono/photo-Fenton process using iron zeolite catalyst by an electrodeposition method.","authors":"Monserrat Castañeda-Juárez, Ivonne Linares-Hernández, Verónica Martínez-Miranda, Elia Alejandra Teutli-Sequeira, Miroslava de Los Ángeles Mier-Quiroga, Luis Antonio Castillo-Suárez","doi":"10.1080/09593330.2024.2430801","DOIUrl":null,"url":null,"abstract":"<p><p>Dexamethasone (DXM) was the first drug used to treat COVID-19, only a small part is metabolized and has been identified in wastewater and surface water, conventional treatments do not remove these compounds, therefore new technologies must be developed. A commercially injectable solution containing dexamethasone (DXM) was removed by heterogeneous sono/photo-Fenton (SPF) process using clinoptilolite zeolite (CZ) modified with Fe (CZ-Fe) by an electrodeposition method. The effect of initial concentration (1.2, 3, 5.5, 8, 9.7 mg/L), H<sub>2</sub>O<sub>2</sub> dose (9.8, 15, 22.5, 30, 35.1 mg/L) and hydraulic retention time (HRT, 39.5, 60, 90, 120, 140 min) were evaluated through central composite design (CCD). The frequency of the ultrasound was 140 kHz. The optimal conditions were 5.5 mg/L DXM, 22.5 mg/L H<sub>2</sub>O<sub>2</sub> and 140 min obtaining an 85.4% DXM by UV-Vis, 99% by high-performance liquid chromatography (HPLC) and 76% by chemical oxygen demand (COD) removal. The systems generated 12, 25, 40.5 and 45.5 mg/L of total oxidant at 20, 60, 100 and 140 kHz, respectively. In individual effects, UV radiation removed 23.6%, ultrasound 18.1% and H<sub>2</sub>O<sub>2</sub> 14% of DXM. In kinetic studies, the best fit was obtained for the Behnajady-Modirshahla-Ghanbery (BMG) model. SPF improved the mass transfer within the reaction media, the oxidation rate and the consumption of H<sub>2</sub>O<sub>2,</sub> and no sludge was generated. Finally, another oxidant formed during the process (H<sup>•</sup>, HO<sub>2</sub><sup>•</sup>, O<sub>2</sub><sup>-•</sup>) contributed to DXM removal.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2430801","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dexamethasone (DXM) was the first drug used to treat COVID-19, only a small part is metabolized and has been identified in wastewater and surface water, conventional treatments do not remove these compounds, therefore new technologies must be developed. A commercially injectable solution containing dexamethasone (DXM) was removed by heterogeneous sono/photo-Fenton (SPF) process using clinoptilolite zeolite (CZ) modified with Fe (CZ-Fe) by an electrodeposition method. The effect of initial concentration (1.2, 3, 5.5, 8, 9.7 mg/L), H2O2 dose (9.8, 15, 22.5, 30, 35.1 mg/L) and hydraulic retention time (HRT, 39.5, 60, 90, 120, 140 min) were evaluated through central composite design (CCD). The frequency of the ultrasound was 140 kHz. The optimal conditions were 5.5 mg/L DXM, 22.5 mg/L H2O2 and 140 min obtaining an 85.4% DXM by UV-Vis, 99% by high-performance liquid chromatography (HPLC) and 76% by chemical oxygen demand (COD) removal. The systems generated 12, 25, 40.5 and 45.5 mg/L of total oxidant at 20, 60, 100 and 140 kHz, respectively. In individual effects, UV radiation removed 23.6%, ultrasound 18.1% and H2O2 14% of DXM. In kinetic studies, the best fit was obtained for the Behnajady-Modirshahla-Ghanbery (BMG) model. SPF improved the mass transfer within the reaction media, the oxidation rate and the consumption of H2O2, and no sludge was generated. Finally, another oxidant formed during the process (H•, HO2•, O2-•) contributed to DXM removal.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current