{"title":"Adapting Artificial Intelligence Concepts to Enhance Clinical Decision-Making: A Hybrid Intelligence Framework.","authors":"Takanobu Hirosawa, Tomoharu Suzuki, Tastuya Shiraishi, Arisa Hayashi, Yoichi Fujii, Taku Harada, Taro Shimizu","doi":"10.2147/IJGM.S497753","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Artificial intelligence (AI) holds great potential for revolutionizing health care by providing clinicians with data-driven insights that support more accurate and efficient clinical decisions. However, applying AI in clinical settings is often challenging due to the complexity and vastness of medical information. This perspective article explores how AI development methodologies can be adapted to support clinicians in their decision-making processes, emphasizing the importance of a hybrid approach that combines AI capabilities with clinicians' expertise.</p><p><strong>Patients and methods: </strong>We developed a conceptual framework designed to integrate AI-driven hybrid intelligence into clinical practice to enhance decision-making. This framework focuses on adapting key AI concepts, such as backpropagation, quantization, and avoiding overfitting, to help clinicians better interpret complex medical data and improve diagnosis and treatment planning.</p><p><strong>Results: </strong>Several AI methodologies were adapted to enhance clinical decision-making. First, backpropagation allows clinicians to refine initial assessments by revisiting them as new data emerges, improving diagnostic accuracy over time. Second, quantization helps break down complex medical problems into manageable components, enabling clinicians to prioritize critical elements of care. Finally, avoiding overfitting encourages clinicians to balance rare diagnoses with more common explanations, reducing the risk of diagnostic errors and unnecessary complexity.</p><p><strong>Conclusion: </strong>The integration of AI-driven hybrid intelligence has the potential to enhance clinical decision-making. By adapting AI methodologies, clinicians can enhance their ability to analyze data, prioritize treatments, and make more accurate diagnoses while preserving the essential human aspect of health care. This framework highlights the importance of combining AI's strengths with clinicians' expertise for more effective and balanced decision-making in clinical practice. This perspective highlights the value of hybrid intelligence in achieving more balanced, effective, and patient-centered decision-making in health care.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"17 ","pages":"5417-5422"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S497753","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Artificial intelligence (AI) holds great potential for revolutionizing health care by providing clinicians with data-driven insights that support more accurate and efficient clinical decisions. However, applying AI in clinical settings is often challenging due to the complexity and vastness of medical information. This perspective article explores how AI development methodologies can be adapted to support clinicians in their decision-making processes, emphasizing the importance of a hybrid approach that combines AI capabilities with clinicians' expertise.
Patients and methods: We developed a conceptual framework designed to integrate AI-driven hybrid intelligence into clinical practice to enhance decision-making. This framework focuses on adapting key AI concepts, such as backpropagation, quantization, and avoiding overfitting, to help clinicians better interpret complex medical data and improve diagnosis and treatment planning.
Results: Several AI methodologies were adapted to enhance clinical decision-making. First, backpropagation allows clinicians to refine initial assessments by revisiting them as new data emerges, improving diagnostic accuracy over time. Second, quantization helps break down complex medical problems into manageable components, enabling clinicians to prioritize critical elements of care. Finally, avoiding overfitting encourages clinicians to balance rare diagnoses with more common explanations, reducing the risk of diagnostic errors and unnecessary complexity.
Conclusion: The integration of AI-driven hybrid intelligence has the potential to enhance clinical decision-making. By adapting AI methodologies, clinicians can enhance their ability to analyze data, prioritize treatments, and make more accurate diagnoses while preserving the essential human aspect of health care. This framework highlights the importance of combining AI's strengths with clinicians' expertise for more effective and balanced decision-making in clinical practice. This perspective highlights the value of hybrid intelligence in achieving more balanced, effective, and patient-centered decision-making in health care.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.