Correlating Electrocardiograms with Echocardiographic Parameters in Hemodynamically-Significant Aortic Regurgitation Using Deep Learning.

IF 1.8 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Yi-Ting Li, Kuang-Chien Chiang, Alexander Te-Wei Shieh, Tetsuji Kitano, Yosuke Nabeshima, Chung-Yen Lee, Kang Liu, Kuan-Yu Lai, Meng-Han Tsai, Li-Ting Ho, Wen-Jone Chen, Masaaki Takeuchi, Tzung-Dau Wang, Li-Tan Yang
{"title":"Correlating Electrocardiograms with Echocardiographic Parameters in Hemodynamically-Significant Aortic Regurgitation Using Deep Learning.","authors":"Yi-Ting Li, Kuang-Chien Chiang, Alexander Te-Wei Shieh, Tetsuji Kitano, Yosuke Nabeshima, Chung-Yen Lee, Kang Liu, Kuan-Yu Lai, Meng-Han Tsai, Li-Ting Ho, Wen-Jone Chen, Masaaki Takeuchi, Tzung-Dau Wang, Li-Tan Yang","doi":"10.6515/ACS.202411_40(6).20240918B","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Of all electrocardiogram (ECG) deep-learning (DL) models used to detect left-sided valvular heart diseases, aortic regurgitation (AR) has been the hardest to detect. Moreover, to what extent ECGs could detect AR-related left ventricular (LV) remodeling and dysfunction is unknown.</p><p><strong>Objectives: </strong>We aimed to evaluate the ability of DL-based ECG models to predict LV remodeling parameters associated with hemodynamically significant AR.</p><p><strong>Methods: </strong>From 573 consecutive patients, 1457 12-lead ECGs close to baseline transthoracic echocardiograms confirming ≥ moderate-severe AR and before aortic valve surgery were retrospectively collected. A ResNet-based model was used to predict LV ejection fraction (LVEF), LV end-diastolic dimension (LVEDD), LV end-systolic dimension index (LVESDi), LV mass index (LVMi), LV end-diastolic volume index (LVEDVi), LV end-systolic volume index (LVESVi), and bicuspid aortic valve (BAV) from the ECGs. Five-fold cross-validation was used for model development (80%) with the held-out testing set (20%) to evaluate its performance.</p><p><strong>Results: </strong>Our DL model achieved area under receiver operating characteristic curves (AUROCs) of 0.77, 0.80, and 0.87 for discriminating LVEF < 55%, < 50%, and < 40%. For LVEDD > 65 mm, LVESDi > 30 mm/m<sup>2</sup>, LVESVi > 45 ml/m<sup>2</sup>, LVEDVi > 99 ml/m<sup>2</sup>, LVMi > 158 mm/m<sup>2</sup>, and BAV, our model also achieved significant results, with AUROCs of 0.83, 0.85, 0.84, 0.81, 0.78, and 0.74, respectively. The SHapley Additive exPlanation values showed that our model focused on the QRS complex while making decisions.</p><p><strong>Conclusions: </strong>Our DL model found correlations between ECGs and parameters indicating LV remodeling and dysfunction in patients with significant AR. Analyzing ECGs with DL models may assist in the timely detection of LV dysfunction and screening for the necessity of additional echocardiography exams, especially when echocardiography might not be readily available.</p>","PeriodicalId":6957,"journal":{"name":"Acta Cardiologica Sinica","volume":"40 6","pages":"762-780"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cardiologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.6515/ACS.202411_40(6).20240918B","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Of all electrocardiogram (ECG) deep-learning (DL) models used to detect left-sided valvular heart diseases, aortic regurgitation (AR) has been the hardest to detect. Moreover, to what extent ECGs could detect AR-related left ventricular (LV) remodeling and dysfunction is unknown.

Objectives: We aimed to evaluate the ability of DL-based ECG models to predict LV remodeling parameters associated with hemodynamically significant AR.

Methods: From 573 consecutive patients, 1457 12-lead ECGs close to baseline transthoracic echocardiograms confirming ≥ moderate-severe AR and before aortic valve surgery were retrospectively collected. A ResNet-based model was used to predict LV ejection fraction (LVEF), LV end-diastolic dimension (LVEDD), LV end-systolic dimension index (LVESDi), LV mass index (LVMi), LV end-diastolic volume index (LVEDVi), LV end-systolic volume index (LVESVi), and bicuspid aortic valve (BAV) from the ECGs. Five-fold cross-validation was used for model development (80%) with the held-out testing set (20%) to evaluate its performance.

Results: Our DL model achieved area under receiver operating characteristic curves (AUROCs) of 0.77, 0.80, and 0.87 for discriminating LVEF < 55%, < 50%, and < 40%. For LVEDD > 65 mm, LVESDi > 30 mm/m2, LVESVi > 45 ml/m2, LVEDVi > 99 ml/m2, LVMi > 158 mm/m2, and BAV, our model also achieved significant results, with AUROCs of 0.83, 0.85, 0.84, 0.81, 0.78, and 0.74, respectively. The SHapley Additive exPlanation values showed that our model focused on the QRS complex while making decisions.

Conclusions: Our DL model found correlations between ECGs and parameters indicating LV remodeling and dysfunction in patients with significant AR. Analyzing ECGs with DL models may assist in the timely detection of LV dysfunction and screening for the necessity of additional echocardiography exams, especially when echocardiography might not be readily available.

利用深度学习将血流动力学显著性主动脉瓣反流的心电图与超声心动图参数关联起来。
背景:在所有用于检测左侧瓣膜性心脏病的心电图(ECG)深度学习(DL)模型中,主动脉瓣反流(AR)最难检测。此外,心电图能在多大程度上检测出与主动脉瓣反流相关的左心室(LV)重塑和功能障碍也是个未知数:我们旨在评估基于 DL 的心电图模型预测与血流动力学显著 AR 相关的左心室重塑参数的能力:方法:我们回顾性地收集了573例连续患者的1457张12导联心电图,这些心电图与基线经胸超声心动图相近,证实≥中重度AR,且在主动脉瓣手术前。使用基于 ResNet 的模型从心电图预测左心室射血分数 (LVEF)、左心室舒张末期尺寸 (LVEDD)、左心室收缩末期尺寸指数 (LVESDi)、左心室质量指数 (LVMi)、左心室舒张末期容积指数 (LVEDVi)、左心室收缩末期容积指数 (LVESVi) 和主动脉瓣双瓣 (BAV)。在模型开发过程中使用了五倍交叉验证(80%),并使用保留的测试集(20%)来评估其性能:我们的 DL 模型在判别 LVEF <55%、<50% 和 <40% 时的接收者操作特征曲线下面积 (AUROC) 分别为 0.77、0.80 和 0.87。对于 LVEDD > 65 mm、LVESDi > 30 mm/m2、LVESVi > 45 ml/m2、LVEDVi > 99 ml/m2、LVMi > 158 mm/m2 和 BAV,我们的模型也取得了显著的结果,AUROC 分别为 0.83、0.85、0.84、0.81、0.78 和 0.74。SHapley Additive exPlanation 值表明,我们的模型在做出决策时侧重于 QRS 波群:我们的 DL 模型发现,心电图与显示明显 AR 患者左心室重塑和功能障碍的参数之间存在相关性。用 DL 模型分析心电图有助于及时发现左心室功能障碍并筛查是否有必要进行额外的超声心动图检查,尤其是在超声心动图检查不方便的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Cardiologica Sinica
Acta Cardiologica Sinica 医学-心血管系统
CiteScore
2.90
自引率
15.80%
发文量
144
审稿时长
>12 weeks
期刊介绍: Acta Cardiologica Sinica welcomes all the papers in the fields related to cardiovascular medicine including basic research, vascular biology, clinical pharmacology, clinical trial, critical care medicine, coronary artery disease, interventional cardiology, arrythmia and electrophysiology, atherosclerosis, hypertension, cardiomyopathy and heart failure, valvular and structure cardiac disease, pediatric cardiology, cardiovascular surgery, and so on. We received papers from more than 20 countries and areas of the world. Currently, 40% of the papers were submitted to Acta Cardiologica Sinica from Taiwan, 20% from China, and 20% from the other countries and areas in the world. The acceptance rate for publication was around 50% in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信