Jeong-Hoon Kim, Chan Mi Park, Hae Chan Jeong, Sungbeom Lee, Chul-Ho Yun
{"title":"Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes.","authors":"Jeong-Hoon Kim, Chan Mi Park, Hae Chan Jeong, Sungbeom Lee, Chul-Ho Yun","doi":"10.1007/s10529-024-03540-w","DOIUrl":null,"url":null,"abstract":"<p><p>The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy. Three minor products (P2-P4) of α-terpineol were considered as 6-hydroxy-α,α,4-trimethyl-3-cyclohexene-1-methanol (P2), trans-sobrerol (P3), and carvone hydrate (P4). Optimal conditions for product formation were determined as pH 7.0 and 30 °C. Production of p-menth-1-ene-3,8-diol was 0.87 mM at 1 h. Structure modeling using PyMOL and CAVER Web 1.2 server indicated that several mutations of CYP102A1 M850 were involved in access tunnels and active sites, resulting in increased activity toward α-terpineol. The major product, p-menth-1-ene-3,8-diol, of α-terpineol was produced by engineered CYP102A1 M850 via regioselective carbon hydroxylation. The engineered CYP102A1 could be a suitable biocatalyst for producing α-terpineol derivatives.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 1","pages":"1"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03540-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy. Three minor products (P2-P4) of α-terpineol were considered as 6-hydroxy-α,α,4-trimethyl-3-cyclohexene-1-methanol (P2), trans-sobrerol (P3), and carvone hydrate (P4). Optimal conditions for product formation were determined as pH 7.0 and 30 °C. Production of p-menth-1-ene-3,8-diol was 0.87 mM at 1 h. Structure modeling using PyMOL and CAVER Web 1.2 server indicated that several mutations of CYP102A1 M850 were involved in access tunnels and active sites, resulting in increased activity toward α-terpineol. The major product, p-menth-1-ene-3,8-diol, of α-terpineol was produced by engineered CYP102A1 M850 via regioselective carbon hydroxylation. The engineered CYP102A1 could be a suitable biocatalyst for producing α-terpineol derivatives.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.