{"title":"Occupational exposure to aerosols in two French airports: multi-year lung function changes.","authors":"Léa Touri, Adeline Tarantini, Carey Suehs, Erika Nogué, Caroline Marie-Desvergne, Muriel Dubosson, Ambre Dauba, Jean-Luc Ravanat, Véronique Chamel, Michel Klerlein, Sébastien Artous, Dominique Locatelli, Sébastien Jacquinot, Pascal Chanez, Isabelle Vachier, Nicolas Molinari","doi":"10.1093/annweh/wxae087","DOIUrl":null,"url":null,"abstract":"<p><p>As differential exposure to airport-generated aerosols may affect employee lung function, the main objective of this study was to longitudinally evaluate spirometry measures among Air France employees. In addition, an exploratory exposure assessment to airport aerosol was performed in a small cohort of workers using personal monitoring devices. Change in lung function over a ~6.6-yr period was documented for office workers (n = 68) and mechanics (n = 83) at Paris-Roissy airport, France and terminal (n = 29), or apron (n = 35) workers at Marseille airport, France. Overall, an excessive decline in lung function was found for 24.75% of airport workers; excessive decline occurred more often for terminal workers (44.83%) as compared to mechanics (14.47%; P = 0.0056), with a similar tendency for apron workers (35.29%) as compared to mechanics (P = 0.0785). Statistically significant differences/tendencies were detected among the yearly rates of change for %-predicted values of forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and from 25% to 75% forced expiratory flow. For the latter variables, the terminal and/or apron workers at Marseille generally had significantly faster lung function decline as compared to office workers and/or mechanics in Paris, although the latter were exposed to a higher level of elemental carbon. No relation between lung function decline and exposure to airport tarmac environments was evidenced. Multivariate exploration of individual variables representing sex, smoking, atopy, respiratory disease, residential PM2.5 pollution, the peak size of particles in lung exhalates or exhaled carbon monoxide at the time of follow-up failed to explain the observed differences. In conclusion, this study documents the first evidence of excessive lung function decline among certain airport workers in France, although the identification of emission sources (environmental factors, aircraft exhaust, etc) remains challenging.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":" ","pages":"17-33"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
As differential exposure to airport-generated aerosols may affect employee lung function, the main objective of this study was to longitudinally evaluate spirometry measures among Air France employees. In addition, an exploratory exposure assessment to airport aerosol was performed in a small cohort of workers using personal monitoring devices. Change in lung function over a ~6.6-yr period was documented for office workers (n = 68) and mechanics (n = 83) at Paris-Roissy airport, France and terminal (n = 29), or apron (n = 35) workers at Marseille airport, France. Overall, an excessive decline in lung function was found for 24.75% of airport workers; excessive decline occurred more often for terminal workers (44.83%) as compared to mechanics (14.47%; P = 0.0056), with a similar tendency for apron workers (35.29%) as compared to mechanics (P = 0.0785). Statistically significant differences/tendencies were detected among the yearly rates of change for %-predicted values of forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and from 25% to 75% forced expiratory flow. For the latter variables, the terminal and/or apron workers at Marseille generally had significantly faster lung function decline as compared to office workers and/or mechanics in Paris, although the latter were exposed to a higher level of elemental carbon. No relation between lung function decline and exposure to airport tarmac environments was evidenced. Multivariate exploration of individual variables representing sex, smoking, atopy, respiratory disease, residential PM2.5 pollution, the peak size of particles in lung exhalates or exhaled carbon monoxide at the time of follow-up failed to explain the observed differences. In conclusion, this study documents the first evidence of excessive lung function decline among certain airport workers in France, although the identification of emission sources (environmental factors, aircraft exhaust, etc) remains challenging.
期刊介绍:
About the Journal
Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?"
We are interested in high quality scientific research addressing:
the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures;
the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities;
populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers;
the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems;
policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities;
methodologies and mechanisms that underlie the quantification and/or control of exposure and risk.
There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.