Replacing Glycerol-3-Phosphate Dehydrogenase with NADH Oxidase: Effects on Glucose Fermentation and Product Formation in Saccharomyces cerevisiae

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Sadat Mohamed Rezk Khattab, Takashi Watanabe
{"title":"Replacing Glycerol-3-Phosphate Dehydrogenase with NADH Oxidase: Effects on Glucose Fermentation and Product Formation in Saccharomyces cerevisiae","authors":"Sadat Mohamed Rezk Khattab,&nbsp;Takashi Watanabe","doi":"10.1007/s00203-024-04187-x","DOIUrl":null,"url":null,"abstract":"<div><p>The NADH/NAD<sup>+</sup> balance plays a critical role in regulating cellular and metabolic pathways. In <i>Saccharomyces cerevisiae</i>, glycerol-3-phosphate dehydrogenase (<i>Sc</i>GPD) enzymes are essential for NADH homeostasis, glycerol biosynthesis, and osmotic stress adaptation. This study investigates the replacement of <i>Sc</i>GPD isoforms with the water-forming NADH oxidase from <i>Lactococcus lactis</i> (<i>Ll</i>noxE) and its effects on 10% glucose fermentation dynamics in minimal medium under microaerobic conditions. We engineered <i>S. cerevisiae</i> strains by individually or sequentially deleting or substituting <i>Sc</i>GPD isoforms with <i>Ll</i>noxE, generating strains with varying NADH oxidation levels, fermentation rates, and byproduct formation. The engineered strains exhibited three distinct fermentation profiles: faster strains (∆GPD2 and ∆GPD1,2), five medium-speed strains (native, ∆GPD1, <i>Ll</i>noxE/∆GPD1, <i>Ll</i>noxE/∆GPD2, and <i>Ll</i>noxE with GPD), and three slower strains (<i>Ll</i>noxE/∆GPD1,2, <i>Ll</i>noxE/∆GPD1-∆GPD2, and <i>Ll</i>noxE/∆GPD2-∆GPD1). Increased NADH oxidation correlated strongly with higher acetic acid production, which inhibited cell growth and reduced fermentation speed, especially when glycerol biosynthesis was abolished. For instance, <i>Ll</i>noxE/ΔGPD1 reduced glycerol production by 88% and increased ethanol yield by 6.2%, despite a 9% increase in acetic acid production. This study underscores the importance of NADH oxidation in optimizing fermentation efficiency and metabolic balance in <i>S. cerevisiae</i> strains lacking GPD during glucose fermentation.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04187-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The NADH/NAD+ balance plays a critical role in regulating cellular and metabolic pathways. In Saccharomyces cerevisiae, glycerol-3-phosphate dehydrogenase (ScGPD) enzymes are essential for NADH homeostasis, glycerol biosynthesis, and osmotic stress adaptation. This study investigates the replacement of ScGPD isoforms with the water-forming NADH oxidase from Lactococcus lactis (LlnoxE) and its effects on 10% glucose fermentation dynamics in minimal medium under microaerobic conditions. We engineered S. cerevisiae strains by individually or sequentially deleting or substituting ScGPD isoforms with LlnoxE, generating strains with varying NADH oxidation levels, fermentation rates, and byproduct formation. The engineered strains exhibited three distinct fermentation profiles: faster strains (∆GPD2 and ∆GPD1,2), five medium-speed strains (native, ∆GPD1, LlnoxE/∆GPD1, LlnoxE/∆GPD2, and LlnoxE with GPD), and three slower strains (LlnoxE/∆GPD1,2, LlnoxE/∆GPD1-∆GPD2, and LlnoxE/∆GPD2-∆GPD1). Increased NADH oxidation correlated strongly with higher acetic acid production, which inhibited cell growth and reduced fermentation speed, especially when glycerol biosynthesis was abolished. For instance, LlnoxE/ΔGPD1 reduced glycerol production by 88% and increased ethanol yield by 6.2%, despite a 9% increase in acetic acid production. This study underscores the importance of NADH oxidation in optimizing fermentation efficiency and metabolic balance in S. cerevisiae strains lacking GPD during glucose fermentation.

用 NADH 氧化酶替代甘油-3-磷酸脱氢酶:对酿酒酵母中葡萄糖发酵和产物形成的影响。
NADH/NAD+ 平衡在调节细胞和新陈代谢途径方面起着至关重要的作用。在酿酒酵母(Saccharomyces cerevisiae)中,甘油-3-磷酸脱氢酶(ScGPD)是 NADH 平衡、甘油生物合成和渗透压适应所必需的酶。本研究探讨了用乳酸乳球菌(Lactococcus lactis)的水形成 NADH 氧化酶(LlnoxE)替代 ScGPD 异构体及其对微需氧条件下最小培养基中 10% 葡萄糖发酵动态的影响。我们通过单独或依次删除或用 LlnoxE 替代 ScGPD 异构体来改造 S. cerevisiae 菌株,从而产生具有不同 NADH 氧化水平、发酵速率和副产物形成的菌株。改造后的菌株表现出三种不同的发酵特征:快速菌株(∆GPD2 和 ∆GPD1,2)、五种中速菌株(原生菌株、∆GPD1、LlnoxE/∆GPD1、LlnoxE/∆GPD2、LlnoxE/ΔGPD1、LlnoxE/ΔGPD1-ΔGPD2 和 LlnoxE 与 GPD),以及三个速度较慢的菌株(LlnoxE/ΔGPD1,2、LlnoxE/ΔGPD1-ΔGPD2 和 LlnoxE/ΔGPD2-ΔGPD1)。NADH 氧化的增加与醋酸产量的增加密切相关,醋酸产量的增加抑制了细胞的生长并降低了发酵速度,尤其是当甘油生物合成被取消时。例如,尽管乙酸产量增加了 9%,但 LlnoxE/ΔGPD1 使甘油产量减少了 88%,乙醇产量增加了 6.2%。这项研究强调了 NADH 氧化在优化葡萄糖发酵过程中缺乏 GPD 的 S. cerevisiae 菌株的发酵效率和代谢平衡方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信