Katie McKenzie, Angela Pllu, Iain Campbell, Linda A Lawton, Bruce Petrie
{"title":"Development of a straightforward direct injection UHPLC-MS/MS method for quantification of plastic additive chemicals in roadside retention ponds.","authors":"Katie McKenzie, Angela Pllu, Iain Campbell, Linda A Lawton, Bruce Petrie","doi":"10.1007/s00216-024-05657-3","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing interest in road pollution that enters surface waters. Additive chemicals used in the manufacture of plastics, including tyre rubber, are mobile pollutants that pose a threat to aquatic life. Therefore, an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed to measure 25 plastic additive chemicals in road runoff and water of retention ponds used to manage road runoff. A straightforward direct injection methodology was adopted to minimise sample handling and risk of contamination. Using this approach, the method quantitation limits (MQLs) ranged from 4.3 × 10<sup>-3</sup> to 13 µg/L. These were adequate to determine most chemicals at or below their freshwater predicted no-effect concentration (PNEC). Method trueness ranged from 18 to 148% with most chemicals being within 80-120%. The method was applied to water from four retention ponds in series to measure additive chemicals entering the ponds (i.e., in road runoff) and passing through each pond. Greatest concentrations were observed in road runoff during heavy rainfall following dry weather. Here, 1,3-diphenylguanidine (DPG) exceeded its current PNEC of 1.05 µg/L. Notably, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) was determined at 0.13 µg/L which is greater than its lowest acute toxicity threshold (0.095 µg/L). Similarity in additive chemical concentrations throughout the retention ponds during steady flow suggests little or no removal occurs. However, further studies are needed to assess the fate and removal of plastic additive chemicals in retention ponds and the risk posed to aquatic environments. Such research can be facilitated by this newly developed UHPLC-MS/MS method.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05657-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing interest in road pollution that enters surface waters. Additive chemicals used in the manufacture of plastics, including tyre rubber, are mobile pollutants that pose a threat to aquatic life. Therefore, an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed to measure 25 plastic additive chemicals in road runoff and water of retention ponds used to manage road runoff. A straightforward direct injection methodology was adopted to minimise sample handling and risk of contamination. Using this approach, the method quantitation limits (MQLs) ranged from 4.3 × 10-3 to 13 µg/L. These were adequate to determine most chemicals at or below their freshwater predicted no-effect concentration (PNEC). Method trueness ranged from 18 to 148% with most chemicals being within 80-120%. The method was applied to water from four retention ponds in series to measure additive chemicals entering the ponds (i.e., in road runoff) and passing through each pond. Greatest concentrations were observed in road runoff during heavy rainfall following dry weather. Here, 1,3-diphenylguanidine (DPG) exceeded its current PNEC of 1.05 µg/L. Notably, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) was determined at 0.13 µg/L which is greater than its lowest acute toxicity threshold (0.095 µg/L). Similarity in additive chemical concentrations throughout the retention ponds during steady flow suggests little or no removal occurs. However, further studies are needed to assess the fate and removal of plastic additive chemicals in retention ponds and the risk posed to aquatic environments. Such research can be facilitated by this newly developed UHPLC-MS/MS method.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.