José Béjar, Omar De-la-Fuente Valerio, Carlos M Ramos-Castillo, Alfredo Aguilar-Elguezabal, Minerva Guerra-Balcázar, Juan Pablo F Rebolledo-Chávez, Noé Arjona, Lorena Álvarez-Contreras
{"title":"Tailoring N and S Heteroatoms Through Rational Design in Carbon Nanotubes-Graphene Composites for Enhanced Zn-Air Battery Performance.","authors":"José Béjar, Omar De-la-Fuente Valerio, Carlos M Ramos-Castillo, Alfredo Aguilar-Elguezabal, Minerva Guerra-Balcázar, Juan Pablo F Rebolledo-Chávez, Noé Arjona, Lorena Álvarez-Contreras","doi":"10.1002/cssc.202401496","DOIUrl":null,"url":null,"abstract":"<p><p>Cathodic materials significantly influence the performance, durability, and sustainability of primary zinc-air batteries (ZABs). This study focuses on the rational design of highly active metal-free composites by tailoring the content of N and S heteroatoms in carbon nanotube-graphene (CNTG) composites. The oxygen reduction reaction (ORR) tests showed onset potentials (E<sub>o</sub>) of 0.88 V (N-CNT) and 0.89 V (N-graphene) for individual materials and 0.92 V for the N-CNTG composite, highlighting the advantage of using a composite materialThe N content varied with dicyandiamide and urea, displaying changes in the surface area and N content (7.09 vs. 5.30 at. %), and in pyridinic and quaternary N species. The N content varied with dicyandiamide and urea, showing changes in the surface area and N content (7.09 vs. 5.30 at. %), and in pyridinic and quaternary N species. The abundance of pyridinic-N species in N-CNTG using urea enabled a higher ORR activity (E<sub>o</sub>=0.92 V). The S incorporation through thiourea improved the E<sub>o</sub> to 0.94 V (Pt/C=1.03 V). And, the combination of urea and thiourea resulted in a highly active and durable N,S-CNTG material, displaying a E<sub>o</sub> of 0.96 V, and an activity loss of 8.7 % (Pt/C=25.4 %) after 2000 cycles. In ZAB mode, this material displayed a voltage of 1.35 V, a power density of 107 mW cm<sup>-2</sup>, and a specific capacity of 1060 mA h g<sup>-1</sup>.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401496"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401496","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cathodic materials significantly influence the performance, durability, and sustainability of primary zinc-air batteries (ZABs). This study focuses on the rational design of highly active metal-free composites by tailoring the content of N and S heteroatoms in carbon nanotube-graphene (CNTG) composites. The oxygen reduction reaction (ORR) tests showed onset potentials (Eo) of 0.88 V (N-CNT) and 0.89 V (N-graphene) for individual materials and 0.92 V for the N-CNTG composite, highlighting the advantage of using a composite materialThe N content varied with dicyandiamide and urea, displaying changes in the surface area and N content (7.09 vs. 5.30 at. %), and in pyridinic and quaternary N species. The N content varied with dicyandiamide and urea, showing changes in the surface area and N content (7.09 vs. 5.30 at. %), and in pyridinic and quaternary N species. The abundance of pyridinic-N species in N-CNTG using urea enabled a higher ORR activity (Eo=0.92 V). The S incorporation through thiourea improved the Eo to 0.94 V (Pt/C=1.03 V). And, the combination of urea and thiourea resulted in a highly active and durable N,S-CNTG material, displaying a Eo of 0.96 V, and an activity loss of 8.7 % (Pt/C=25.4 %) after 2000 cycles. In ZAB mode, this material displayed a voltage of 1.35 V, a power density of 107 mW cm-2, and a specific capacity of 1060 mA h g-1.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology