Molecular Engineering for Future Thermoelectric Materials: The Role of Electrode and Metal Components in Molecular Junctions.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-11-24 DOI:10.1002/cssc.202402077
Jiwoo Park, Sohyun Park
{"title":"Molecular Engineering for Future Thermoelectric Materials: The Role of Electrode and Metal Components in Molecular Junctions.","authors":"Jiwoo Park, Sohyun Park","doi":"10.1002/cssc.202402077","DOIUrl":null,"url":null,"abstract":"<p><p>As global temperatures increase due to climate change, the accumulation of excess heat on Earth presents a valuable resource that can be harnessed for electricity generation using thermoelectric materials. However, the intricate structures of bulk thermoelectric materials pose significant challenges to their comprehensive understanding and limit performance. Additionally, their relatively high production costs present practical obstacles. A promising solution to these issues lies in molecular control and the use of molecular junctions. Molecules are predicted to surpass the performance of existing bulk materials in energy conversion because they can be chemically tuned to achieve high thermoelectric efficiencies. This review identifies the thermoelectric parameters that affect the performance of molecular junctions. It also explores various experimental platforms for measuring thermoelectric performance from single molecules to assemblies of hundreds of molecules. Finally, it highlights recent advancements in thermoelectric molecular junctions, focusing on the crucial roles of electrodes and metal components within the molecules, such as Ru complexes, metalloporphyrins, metallocenes, conjugated silane wires, and endohedral metallofullerenes. Ultimately, our review provides a comprehensive analysis of strategies to enhance the thermoelectric efficiency of molecular junctions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402077"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As global temperatures increase due to climate change, the accumulation of excess heat on Earth presents a valuable resource that can be harnessed for electricity generation using thermoelectric materials. However, the intricate structures of bulk thermoelectric materials pose significant challenges to their comprehensive understanding and limit performance. Additionally, their relatively high production costs present practical obstacles. A promising solution to these issues lies in molecular control and the use of molecular junctions. Molecules are predicted to surpass the performance of existing bulk materials in energy conversion because they can be chemically tuned to achieve high thermoelectric efficiencies. This review identifies the thermoelectric parameters that affect the performance of molecular junctions. It also explores various experimental platforms for measuring thermoelectric performance from single molecules to assemblies of hundreds of molecules. Finally, it highlights recent advancements in thermoelectric molecular junctions, focusing on the crucial roles of electrodes and metal components within the molecules, such as Ru complexes, metalloporphyrins, metallocenes, conjugated silane wires, and endohedral metallofullerenes. Ultimately, our review provides a comprehensive analysis of strategies to enhance the thermoelectric efficiency of molecular junctions.

未来热电材料的分子工程学:分子结中电极和金属成分的作用。
随着气候变化导致全球气温升高,地球上积累的多余热量成为宝贵的资源,可利用热电材料进行发电。然而,块状热电材料的复杂结构对全面了解它们构成了重大挑战,并限制了它们的性能。此外,其相对较高的生产成本也带来了实际障碍。分子控制和分子结的使用有望解决这些问题。据预测,分子在能量转换方面的性能将超过现有的块状材料,因为它们可以通过化学调整来实现高热电效率。本综述确定了影响分子结性能的热电参数。它还探讨了测量从单个分子到数百个分子集合体的热电性能的各种实验平台。最后,它着重介绍了热电分子结的最新进展,重点是分子中电极和金属成分的关键作用,如 Ru 复合物、金属卟啉、茂金属、共轭硅烷丝和内面金属富勒烯。最后,我们的综述全面分析了提高分子结热电效率的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信