{"title":"Numerical analysis of bioconvective heat transport through Casson nanofluid over a thin needle","authors":"Snehalata Jena, Manoj Kumar Mishra","doi":"10.1007/s10867-024-09664-4","DOIUrl":null,"url":null,"abstract":"<div><p>Bioconvective flows over a thin needle hold significant importance in various fields, particularly in biomedical engineering, microfluidics, and environmental science. This paper examines the bioconvective flow properties of a copper and blood-based Casson nanofluid over a thin needle, accounting for gyrotactic microorganisms in the presence of a magnetic field. The two-phase nanofluid model is applied to formulate the flow problem. The system of non-dimensional ordinary differential equations is obtained by reducing the governing partial differential equations with the help of similarity variables. Further, the ODEs are numerically solved using the 4th-order Runge–Kutta method based Shooting technique. The similar solutions of the non-dimensional ODEs are represented graphically and the blood-based nanofluid’s velocity, temperature, concentration, and presence of microorganisms are examined with reference to the accompanying diagrams. A detailed analysis is provided for skin friction, Nusselt number, and microorganism density number. The primary outcomes reveal that the augmentation of the mixed convection parameter and buoyancy ratio parameter enhance the rate of heat transfer.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-024-09664-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bioconvective flows over a thin needle hold significant importance in various fields, particularly in biomedical engineering, microfluidics, and environmental science. This paper examines the bioconvective flow properties of a copper and blood-based Casson nanofluid over a thin needle, accounting for gyrotactic microorganisms in the presence of a magnetic field. The two-phase nanofluid model is applied to formulate the flow problem. The system of non-dimensional ordinary differential equations is obtained by reducing the governing partial differential equations with the help of similarity variables. Further, the ODEs are numerically solved using the 4th-order Runge–Kutta method based Shooting technique. The similar solutions of the non-dimensional ODEs are represented graphically and the blood-based nanofluid’s velocity, temperature, concentration, and presence of microorganisms are examined with reference to the accompanying diagrams. A detailed analysis is provided for skin friction, Nusselt number, and microorganism density number. The primary outcomes reveal that the augmentation of the mixed convection parameter and buoyancy ratio parameter enhance the rate of heat transfer.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.