Bookun Kim, Hwi Won Seo, Kyuri Lee, Dongeun Yong, Yoon Kyung Park, Yujin Lee, Solip Lee, Do-Wan Kim, Dajeong Kim, Choong-Min Ryu
{"title":"Lipid Nanoparticle-Mediated CRISPR-Cas13a Delivery for the Control of Bacterial Infection.","authors":"Bookun Kim, Hwi Won Seo, Kyuri Lee, Dongeun Yong, Yoon Kyung Park, Yujin Lee, Solip Lee, Do-Wan Kim, Dajeong Kim, Choong-Min Ryu","doi":"10.1002/adhm.202403281","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) can assist in the delivery of nucleic acid inside animal cells, as demonstrated by their use in COVID-19 vaccine development. However, LNPs applicable to bacteria have not been reported. Here, the screening of 511 LNPs containing random combinations of different lipid components identified two LNPs, LNP 496 and LNP 470, that efficiently delivered plasmids into Escherichia coli BW25113. Since Gram-negative bacteria have lipid bilayers, the bacteria are pretreated with LNP-helper that weakens the bacterial membrane. The cationic lipid DOTAP improved delivery of LNP-encapsulated plasmid DNA when present at a molar ratio of 10-25 mol% in the LNP. LNP encapsulation of the Cas13a/gRNA expression vector controlled infection by a clinical Escherichia strain in Galleria mellonela larvae and mouse infection models when used in combination with non-cytotoxic concentrations of polymyxin B, a bacterial membrane disruptor. Together, the results show that LNPs can be useful as a delivery platform for agents that counteract pathogenic bacterial infections.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403281"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403281","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) can assist in the delivery of nucleic acid inside animal cells, as demonstrated by their use in COVID-19 vaccine development. However, LNPs applicable to bacteria have not been reported. Here, the screening of 511 LNPs containing random combinations of different lipid components identified two LNPs, LNP 496 and LNP 470, that efficiently delivered plasmids into Escherichia coli BW25113. Since Gram-negative bacteria have lipid bilayers, the bacteria are pretreated with LNP-helper that weakens the bacterial membrane. The cationic lipid DOTAP improved delivery of LNP-encapsulated plasmid DNA when present at a molar ratio of 10-25 mol% in the LNP. LNP encapsulation of the Cas13a/gRNA expression vector controlled infection by a clinical Escherichia strain in Galleria mellonela larvae and mouse infection models when used in combination with non-cytotoxic concentrations of polymyxin B, a bacterial membrane disruptor. Together, the results show that LNPs can be useful as a delivery platform for agents that counteract pathogenic bacterial infections.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.