Hrishikesh Pingulkar, Cédric Ayela and Jean-Baptiste Salmon
{"title":"Pervaporation-driven electrokinetic energy harvesting using poly(dimethylsiloxane) microfluidic chips†","authors":"Hrishikesh Pingulkar, Cédric Ayela and Jean-Baptiste Salmon","doi":"10.1039/D4LC00831F","DOIUrl":null,"url":null,"abstract":"<p >Electrokinetic energy harvesting from evaporation-driven flows in porous materials has recently been the subject of numerous studies, particularly with the development of nanomaterials with high conversion efficiencies. The configuration in which the energy conversion element is located upstream of the element which passively drives the evaporative flow has rarely been studied. However, this configuration offers the possibility of increasing the harvested energy simply by increasing the evaporation surface area and/or the hydraulic resistance of the energy conversion element. In this work, we investigate this configuration with poly(dimethylsiloxane) (PDMS) chips playing the role of <em>artificial leaves</em> driving a pervaporation-induced flow through a polystyrene colloid plug in a submillimetre tube for the energy conversion. With an appropriate design of the venation of the PDMS leaves, we report the first experimental evidence of electrokinetic energy conversion from pervaporation-induced flows, which increases with the pervaporation area. We also provide new insights by demonstrating that this increase is limited by cavitation within the PDMS leaves, which occurs systematically as soon as the water pressure inside the leaf reaches <em>P</em><small><sub>leaf</sub></small> ≃ 0 bar. Whatever the cavitation threshold, this phenomenon imposes an intrinsic limit on this configuration, underlining the need for innovative strategies to improve the harvesting of electrokinetic energy by evaporation.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 24","pages":" 5328-5337"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00831f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrokinetic energy harvesting from evaporation-driven flows in porous materials has recently been the subject of numerous studies, particularly with the development of nanomaterials with high conversion efficiencies. The configuration in which the energy conversion element is located upstream of the element which passively drives the evaporative flow has rarely been studied. However, this configuration offers the possibility of increasing the harvested energy simply by increasing the evaporation surface area and/or the hydraulic resistance of the energy conversion element. In this work, we investigate this configuration with poly(dimethylsiloxane) (PDMS) chips playing the role of artificial leaves driving a pervaporation-induced flow through a polystyrene colloid plug in a submillimetre tube for the energy conversion. With an appropriate design of the venation of the PDMS leaves, we report the first experimental evidence of electrokinetic energy conversion from pervaporation-induced flows, which increases with the pervaporation area. We also provide new insights by demonstrating that this increase is limited by cavitation within the PDMS leaves, which occurs systematically as soon as the water pressure inside the leaf reaches Pleaf ≃ 0 bar. Whatever the cavitation threshold, this phenomenon imposes an intrinsic limit on this configuration, underlining the need for innovative strategies to improve the harvesting of electrokinetic energy by evaporation.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.