Shabnam Heydarzadeh , Ali Asghar Moshtaghie , Maryam Daneshpour , Reza Pishdad , Amin Farahani , Mehdi Hedayati
{"title":"The toxicological role of Myricetin in the progression of human anaplastic thyroid cancer SW1736 cell line","authors":"Shabnam Heydarzadeh , Ali Asghar Moshtaghie , Maryam Daneshpour , Reza Pishdad , Amin Farahani , Mehdi Hedayati","doi":"10.1016/j.fct.2024.115137","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims and background</h3><div>Anaplastic thyroid cancer cells lack the capacity to effectively accumulate iodine and are therefore unresponsive to treatment with radioactive iodine. The main objective of this study was to examine the possible therapeutic effects of Myricetin on the SW1736 ATC cell line. In this study, we assessed the influence of Myricetin on iodide absorption, sodium iodide symporter gene expression, and apoptosis induction.</div></div><div><h3>Material methods</h3><div>The interaction between the 7UUY protein of NIS and Myricetin was investigated using AutoDock Vina. Assessment of cell viability was conducted with the MTT assay, whereas cell apoptosis was evaluated by flow cytometry using the Annexin V-FITC Apoptosis Detection kit. A spectrophotometric test based on the Sandell-Kolthoff reaction was conducted to assess the absorption of iodide by SW1736 cells. QRT-PCR analyses were used to assess the expression levels of NIS mRNA in SW1736 cells.</div></div><div><h3>Results</h3><div>The hydrogen bond interaction pattern created by PyMOL revealed the interactions between the target and ligand molecules. The results demonstrated that Myricetin-induced cell death is dependent on apoptosis in this type of thyroid cancer cell line. QRT-PCR analyses revealed significantly higher NIS mRNA (P < 0.001) levels in the Myricetin-treated group than in the non-treated group. Furthermore, Myricetin treatment significantly increased iodide uptake (P value = 0.0053) in the SW1736 thyroid cancer cell line compared to the control group.</div></div><div><h3>Conclusion</h3><div>These findings suggest that Myricetin has potential as a therapeutic agent by promoting growth inhibition, enhancing NIS gene expression, and increasing iodide uptake in SW1736 cells. Additional research is necessary to clarify the fundamental mechanisms and to evaluate the efficacy of Myricetin in preclinical and clinical settings.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"195 ","pages":"Article 115137"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691524007038","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims and background
Anaplastic thyroid cancer cells lack the capacity to effectively accumulate iodine and are therefore unresponsive to treatment with radioactive iodine. The main objective of this study was to examine the possible therapeutic effects of Myricetin on the SW1736 ATC cell line. In this study, we assessed the influence of Myricetin on iodide absorption, sodium iodide symporter gene expression, and apoptosis induction.
Material methods
The interaction between the 7UUY protein of NIS and Myricetin was investigated using AutoDock Vina. Assessment of cell viability was conducted with the MTT assay, whereas cell apoptosis was evaluated by flow cytometry using the Annexin V-FITC Apoptosis Detection kit. A spectrophotometric test based on the Sandell-Kolthoff reaction was conducted to assess the absorption of iodide by SW1736 cells. QRT-PCR analyses were used to assess the expression levels of NIS mRNA in SW1736 cells.
Results
The hydrogen bond interaction pattern created by PyMOL revealed the interactions between the target and ligand molecules. The results demonstrated that Myricetin-induced cell death is dependent on apoptosis in this type of thyroid cancer cell line. QRT-PCR analyses revealed significantly higher NIS mRNA (P < 0.001) levels in the Myricetin-treated group than in the non-treated group. Furthermore, Myricetin treatment significantly increased iodide uptake (P value = 0.0053) in the SW1736 thyroid cancer cell line compared to the control group.
Conclusion
These findings suggest that Myricetin has potential as a therapeutic agent by promoting growth inhibition, enhancing NIS gene expression, and increasing iodide uptake in SW1736 cells. Additional research is necessary to clarify the fundamental mechanisms and to evaluate the efficacy of Myricetin in preclinical and clinical settings.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.