Evaluation of silver nanoformulated plant extracts against larvae of the fall armyworm, Spodoptera frugiperda (J. E. Smith), under laboratory and field conditions
Umair Abbas, Muhammad Zeeshan Majeed, Wafa Abdullah Hamad Alkherb, Mohammed Ali Alshehri, Lamya Ahmed Alkeridis, Samy Sayed, Muhammad Irfan Majeed, Muhammad Asam Riaz
{"title":"Evaluation of silver nanoformulated plant extracts against larvae of the fall armyworm, Spodoptera frugiperda (J. E. Smith), under laboratory and field conditions","authors":"Umair Abbas, Muhammad Zeeshan Majeed, Wafa Abdullah Hamad Alkherb, Mohammed Ali Alshehri, Lamya Ahmed Alkeridis, Samy Sayed, Muhammad Irfan Majeed, Muhammad Asam Riaz","doi":"10.1111/1748-5967.70003","DOIUrl":null,"url":null,"abstract":"<p>The fall armyworm, <i>Spodoptera frugiperda</i> (J. E. Smith), is a destructive pest of <i>Zea mays</i> (maize) and other agricultural crops. The synthetic insecticides predominantly used against this pest lead to pest resistance, environmental contamination and health hazards. This study evaluated nanoformulated aqueous extracts of some promising local plant species against third instar larvae of <i>S. frugiperda</i> under laboratory and field conditions. The initial screening bioassay showed highest larval mortality with a 20% extract of <i>Nicotiana tabacum</i> L. (66.67%), followed by <i>Azadirachta indica</i> A. Juss. (53.33%), <i>Withania somnifera</i> L. (46.67%), <i>Melia azedarach</i> L. (40%) and <i>Dodonaea viscosa</i> Jacq. (33.33%). The two most effective plant extracts (<i>A. indica</i> and <i>N. tabacum</i>) were further nanoformulated with silver nitrate (AgNO<sub>3</sub>) and bioassayed against <i>S. frugiperda</i> larvae using different concentrations. The results showed that these nanoformulated extracts caused significant larval mortality, with LC<sub>50</sub> (lethal concentration that kills 50% of the population) and LT<sub>50</sub> (lethal time to kill 50% of the population) values of 37.36 and 28.21% at 72 h, and 52.19 and 33.25 h at 80% concentration, respectively. Field experiments on <i>Zea mays</i> L. (maize) plants showed maximum larval reduction by nanoformulated <i>A. indica</i> extract (48%), followed by <i>N. tabacum</i> extract (36%), whereas 80% and 20% larval reduction was noted for the positive (SuperLock®, emamectin benzoate and tebufenozide) and the negative (water) controls, respectively. Furthermore, characterization of both silver nanoparticles-based plant extract formulations was performed using ultraviolet–visible (UV–vis) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM) techniques, which confirmed the formation of silver nanoparticles. It is concluded that nanoformulated plant extracts can be an effective alternative to synthetic pesticides in combatting <i>S. frugiperda</i> and other lepidopteran pests.</p>","PeriodicalId":11776,"journal":{"name":"Entomological Research","volume":"54 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1748-5967.70003","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a destructive pest of Zea mays (maize) and other agricultural crops. The synthetic insecticides predominantly used against this pest lead to pest resistance, environmental contamination and health hazards. This study evaluated nanoformulated aqueous extracts of some promising local plant species against third instar larvae of S. frugiperda under laboratory and field conditions. The initial screening bioassay showed highest larval mortality with a 20% extract of Nicotiana tabacum L. (66.67%), followed by Azadirachta indica A. Juss. (53.33%), Withania somnifera L. (46.67%), Melia azedarach L. (40%) and Dodonaea viscosa Jacq. (33.33%). The two most effective plant extracts (A. indica and N. tabacum) were further nanoformulated with silver nitrate (AgNO3) and bioassayed against S. frugiperda larvae using different concentrations. The results showed that these nanoformulated extracts caused significant larval mortality, with LC50 (lethal concentration that kills 50% of the population) and LT50 (lethal time to kill 50% of the population) values of 37.36 and 28.21% at 72 h, and 52.19 and 33.25 h at 80% concentration, respectively. Field experiments on Zea mays L. (maize) plants showed maximum larval reduction by nanoformulated A. indica extract (48%), followed by N. tabacum extract (36%), whereas 80% and 20% larval reduction was noted for the positive (SuperLock®, emamectin benzoate and tebufenozide) and the negative (water) controls, respectively. Furthermore, characterization of both silver nanoparticles-based plant extract formulations was performed using ultraviolet–visible (UV–vis) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM) techniques, which confirmed the formation of silver nanoparticles. It is concluded that nanoformulated plant extracts can be an effective alternative to synthetic pesticides in combatting S. frugiperda and other lepidopteran pests.
期刊介绍:
Entomological Research is the successor of the Korean Journal of Entomology. Published by the Entomological Society of Korea (ESK) since 1970, it is the official English language journal of ESK, and publishes original research articles dealing with any aspect of entomology. Papers in any of the following fields will be considered:
-systematics-
ecology-
physiology-
biochemistry-
pest control-
embryology-
genetics-
cell and molecular biology-
medical entomology-
apiculture and sericulture.
The Journal publishes research papers and invited reviews.