{"title":"Multi-objective optimization of inductive power transfer system with reconfigurable topology for misalignment tolerance","authors":"Junfeng Yang, Qiujiang Liu, Xu Yang, Yanru Zhang","doi":"10.1049/pel2.12766","DOIUrl":null,"url":null,"abstract":"<p>At present, most of the analyses or studies about inductive power transfer (IPT) with constant current (CC) output and constant voltage (CV) output are carried out without considering misalignment conditions or different gaps. An IPT system satisfying battery charging demand and anti-misalignment requirements simultaneously is infrequent. This paper proposes a multi-objective particle swarm optimization method of IPT reconfigurable topology to realize CC and CV modes at varying resistance conditions and wide coupling ranges. The output characteristics of an inductor–capacitor–capacitor (LCC)–LCC compensation circuit have been explored, and it is found that the secondary-side compensated capacitors have a greater impact on the output power, which can be used to improve power regulation ability accompanied by coupling varying. Eight optimization compensated parameters of the reconfigurable topology are obtained from the Pareto front to achieve the required CC and CV charging outputs. By switching the compensated capacitors, the selected parameters can make the current and voltage fluctuation less than 9.3% and 7.9%, respectively, during the coupling charging range from 0.3 to 0.22. Moreover, primary zero voltage switching operation is achieved to enable high efficiency. The simulation and the experimental verification are carried out to verify the validity of the proposed method.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 15","pages":"2262-2277"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12766","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12766","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
At present, most of the analyses or studies about inductive power transfer (IPT) with constant current (CC) output and constant voltage (CV) output are carried out without considering misalignment conditions or different gaps. An IPT system satisfying battery charging demand and anti-misalignment requirements simultaneously is infrequent. This paper proposes a multi-objective particle swarm optimization method of IPT reconfigurable topology to realize CC and CV modes at varying resistance conditions and wide coupling ranges. The output characteristics of an inductor–capacitor–capacitor (LCC)–LCC compensation circuit have been explored, and it is found that the secondary-side compensated capacitors have a greater impact on the output power, which can be used to improve power regulation ability accompanied by coupling varying. Eight optimization compensated parameters of the reconfigurable topology are obtained from the Pareto front to achieve the required CC and CV charging outputs. By switching the compensated capacitors, the selected parameters can make the current and voltage fluctuation less than 9.3% and 7.9%, respectively, during the coupling charging range from 0.3 to 0.22. Moreover, primary zero voltage switching operation is achieved to enable high efficiency. The simulation and the experimental verification are carried out to verify the validity of the proposed method.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf