Decomposition of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ : Implications for CH x / NH y ${\rm CH}_{\rm {\it x}}/{\rm NH}_{\rm {\it y}}$ radical–radical reactions

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL
Peter Glarborg, Maria U. Alzueta
{"title":"Decomposition of \n \n \n \n CH\n 3\n \n \n NH\n 2\n \n \n ${\\rm CH}_3{\\rm NH}_2$\n : Implications for \n \n \n \n CH\n x\n \n /\n \n NH\n y\n \n \n ${\\rm CH}_{\\rm {\\it x}}/{\\rm NH}_{\\rm {\\it y}}$\n radical–radical reactions","authors":"Peter Glarborg,&nbsp;Maria U. Alzueta","doi":"10.1002/kin.21760","DOIUrl":null,"url":null,"abstract":"<p>Experiments on methylamine (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_3{\\rm NH}_2$</annotation>\n </semantics></math>) decomposition in shock tubes, flow reactors, and batch reactors have been re-examined to improve the understanding of hydrocarbon/amine interactions and constrain rate constants for <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mi>x</mi>\n </msub>\n <annotation>${\\rm CH}_{ x}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <msub>\n <mi>NH</mi>\n <mi>y</mi>\n </msub>\n <annotation>${\\rm NH}_{ y}$</annotation>\n </semantics></math> reactions. In high-temperature shock tube experiments, the rapid thermal dissociation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_3{\\rm NH}_2$</annotation>\n </semantics></math> provides a fairly clean source of <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CH}_3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm NH}_2$</annotation>\n </semantics></math> radicals, allowing an assessment of reactions of <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CH}_3$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm NH}_2$</annotation>\n </semantics></math> and NH. At the lower temperatures in batch and flow reactors, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_3{\\rm NH}_2$</annotation>\n </semantics></math> is mostly consumed by reaction with H to form <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_2{\\rm NH}_2$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm H}_2$</annotation>\n </semantics></math>; these results are useful in determining the fate of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_2{\\rm NH}_2$</annotation>\n </semantics></math> radical. Interpretation of these data, along with flow reactor data for the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_3{\\rm NH}_2$</annotation>\n </semantics></math>/H system at lower temperature, indicates that at temperatures up to about 1400 K at atmospheric pressure and above 2000 K at 100 atm, the <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CH}_3$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm NH}_2$</annotation>\n </semantics></math> reaction forms mainly methylamine. At sufficiently high temperature, H-abstraction to form <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mn>4</mn>\n </msub>\n <annotation>${\\rm CH}_4$</annotation>\n </semantics></math> + NH and addition–elimination to form <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_2{\\rm NH}_2$</annotation>\n </semantics></math> + H become competitive. The <span></span><math>\n <semantics>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CH}_3$</annotation>\n </semantics></math> + NH reaction, with a rate constant close to collision frequency, forms <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>2</mn>\n </msub>\n <mi>NH</mi>\n </mrow>\n <annotation>${\\rm CH}_2{\\rm NH}$</annotation>\n </semantics></math> + H, also leading into the hydrocarbon amine pool. Thus, methylamine can be expected to be an important intermediate in co-combustion of natural gas and ammonia, and more work on the chemistry of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CH</mi>\n <mn>3</mn>\n </msub>\n <msub>\n <mi>NH</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm CH}_3{\\rm NH}_2$</annotation>\n </semantics></math> is desirable.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 1","pages":"77-90"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21760","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments on methylamine ( CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ ) decomposition in shock tubes, flow reactors, and batch reactors have been re-examined to improve the understanding of hydrocarbon/amine interactions and constrain rate constants for CH x ${\rm CH}_{ x}$ + NH y ${\rm NH}_{ y}$ reactions. In high-temperature shock tube experiments, the rapid thermal dissociation of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ provides a fairly clean source of CH 3 ${\rm CH}_3$ and NH 2 ${\rm NH}_2$ radicals, allowing an assessment of reactions of CH 3 ${\rm CH}_3$ with NH 2 ${\rm NH}_2$ and NH. At the lower temperatures in batch and flow reactors, CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ is mostly consumed by reaction with H to form CH 2 NH 2 ${\rm CH}_2{\rm NH}_2$ + H 2 ${\rm H}_2$ ; these results are useful in determining the fate of the CH 2 NH 2 ${\rm CH}_2{\rm NH}_2$ radical. Interpretation of these data, along with flow reactor data for the CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ /H system at lower temperature, indicates that at temperatures up to about 1400 K at atmospheric pressure and above 2000 K at 100 atm, the CH 3 ${\rm CH}_3$ + NH 2 ${\rm NH}_2$ reaction forms mainly methylamine. At sufficiently high temperature, H-abstraction to form CH 4 ${\rm CH}_4$ + NH and addition–elimination to form CH 2 NH 2 ${\rm CH}_2{\rm NH}_2$ + H become competitive. The CH 3 ${\rm CH}_3$ + NH reaction, with a rate constant close to collision frequency, forms CH 2 NH ${\rm CH}_2{\rm NH}$ + H, also leading into the hydrocarbon amine pool. Thus, methylamine can be expected to be an important intermediate in co-combustion of natural gas and ammonia, and more work on the chemistry of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ is desirable.

Abstract Image

CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ 的分解:对 CH x / NH y ${\rm CH}_{\rm {it x}}/{\rm NH}_{\rm {it y}}$ 自由基-自由基反应的影响
对冲击管、流动反应器和间歇反应器中的甲胺(CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ )分解实验进行了重新审查,以加深对碳氢化合物/胺相互作用的理解,并限制 CH x ${\rm CH}_{ x}$ + NH y ${\rm NH}_{ y}$ 反应的速率常数。在高温冲击管实验中,CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ 的快速热解离提供了相当干净的 CH 3 ${\rm CH}_3$ 和 NH 2 ${\rm NH}_2$ 自由基来源,从而可以评估 CH 3 ${\rm CH}_3$ 与 NH 2 ${\rm NH}_2$ 和 NH 的反应。在间歇反应器和流动反应器中的较低温度下,CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ 大部分是通过与 H 反应生成 CH 2 NH 2 ${\rm CH}_2{\rm NH}_2$ + H 2 ${\rm H}_2$ 而消耗掉的;这些结果有助于确定 CH 2 NH 2 ${\rm CH}_2{\rm NH}_2$ 自由基的去向。对这些数据以及 CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ /H 系统在较低温度下的流动反应器数据的解释表明,在温度高达约 1400 K(常压)和高于 2000 K(100 atm)时,CH 3 ${\rm CH}_3$ + NH 2 ${\rm NH}_2$ 反应主要形成甲胺。在足够高的温度下,H-萃取形成 CH 4 ${\rm CH}_4$ + NH 和加成-消除形成 CH 2 NH 2 ${\rm CH}_2\{rm NH}_2$ + H 成为竞争反应。CH 3 ${\rm CH}_3$ + NH 反应的速率常数接近碰撞频率,形成 CH 2 NH ${\rm CH}_2{\rm NH}$ + H,也进入碳氢化合物胺池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信