The index of equidimensional flag manifolds

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-11-20 DOI:10.1112/mtk.70001
Samik Basu, Bikramjit Kundu
{"title":"The index of equidimensional flag manifolds","authors":"Samik Basu,&nbsp;Bikramjit Kundu","doi":"10.1112/mtk.70001","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the flag manifold of <span></span><math></math> orthogonal subspaces of equal dimension that carries an action of the cyclic group of order <span></span><math></math>. We provide a complete calculation of the associated Fadell–Husseini index. This may be thought of as an odd primary version of the computations of Baralić, Blagojevic, Karasev, and Vucic, for the Grassmann manifold <span></span><math></math>. These results have geometric consequences for <span></span><math></math>-fold orthogonal shadows of a convex body.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the flag manifold of orthogonal subspaces of equal dimension that carries an action of the cyclic group of order . We provide a complete calculation of the associated Fadell–Husseini index. This may be thought of as an odd primary version of the computations of Baralić, Blagojevic, Karasev, and Vucic, for the Grassmann manifold . These results have geometric consequences for -fold orthogonal shadows of a convex body.

等维旗流形的指数
在本文中,我们考虑了等维正交子空间的旗流形,该旗流形带有阶为 . 的循环群的作用。我们提供了相关法德尔-胡赛尼指数的完整计算。这可以看作是巴拉利奇、布拉戈耶维奇、卡拉塞夫和武契奇计算格拉斯曼流形的奇异初级版本。这些结果对凸体的-倍正交阴影具有几何意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信