Anthropogenic Aerosols Have Significantly Weakened the Regional Summertime Circulation in the Northern Hemisphere During the Satellite Era

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-11-21 DOI:10.1029/2024AV001318
Joonsuk M. Kang, Tiffany A. Shaw, Lantao Sun
{"title":"Anthropogenic Aerosols Have Significantly Weakened the Regional Summertime Circulation in the Northern Hemisphere During the Satellite Era","authors":"Joonsuk M. Kang,&nbsp;Tiffany A. Shaw,&nbsp;Lantao Sun","doi":"10.1029/2024AV001318","DOIUrl":null,"url":null,"abstract":"<p>Reanalysis data show a significant weakening of summertime circulation in the Northern Hemisphere (NH) midlatitudes in the satellite era with implications for surface weather extremes. Recent work showed the weakening is not significantly affected by changes in the Arctic, but did not examine the role of different anthropogenic forcings such as aerosols. Here we use the Detection and Attribution Model Intercomparison Project (DAMIP) simulations to quantify the impact of anthropogenic aerosol and greenhouse gas forcing. The DAMIP simulations show aerosols and greenhouse gases contribute equally to zonal-mean circulation weakening. Regionally, aerosol dominates the Pacific storm track weakening whereas greenhouse gas dominates in the Atlantic. Using a regional energetic framework, we show why the impact of aerosol is the largest in the Pacific. Reduced sulfate aerosol emissions over Eurasia and North America increase (clear-sky) surface shortwave radiation and turbulent fluxes. This enhances land-to-ocean energy contrast and energy transport via stationary circulations to the ocean. Consequently, energy converges poleward of oceanic storm tracks, demanding weaker poleward energy transport storm tracks, and the storm tracks weaken. The impact is larger over the Pacific following the larger emission decrease over Eurasia than North America. Similar yet opposite, increased aerosol emissions over South and East Asia decrease shortwave radiation and weaken land-to-ocean energy transport. This diverges energy equatorward of the Pacific storm track, further weakening it. Our results show aerosols are a dominant driver of regional circulation weakening during the NH summertime in the satellite era and a regional energetic framework explaining the underlying processes.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001318","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reanalysis data show a significant weakening of summertime circulation in the Northern Hemisphere (NH) midlatitudes in the satellite era with implications for surface weather extremes. Recent work showed the weakening is not significantly affected by changes in the Arctic, but did not examine the role of different anthropogenic forcings such as aerosols. Here we use the Detection and Attribution Model Intercomparison Project (DAMIP) simulations to quantify the impact of anthropogenic aerosol and greenhouse gas forcing. The DAMIP simulations show aerosols and greenhouse gases contribute equally to zonal-mean circulation weakening. Regionally, aerosol dominates the Pacific storm track weakening whereas greenhouse gas dominates in the Atlantic. Using a regional energetic framework, we show why the impact of aerosol is the largest in the Pacific. Reduced sulfate aerosol emissions over Eurasia and North America increase (clear-sky) surface shortwave radiation and turbulent fluxes. This enhances land-to-ocean energy contrast and energy transport via stationary circulations to the ocean. Consequently, energy converges poleward of oceanic storm tracks, demanding weaker poleward energy transport storm tracks, and the storm tracks weaken. The impact is larger over the Pacific following the larger emission decrease over Eurasia than North America. Similar yet opposite, increased aerosol emissions over South and East Asia decrease shortwave radiation and weaken land-to-ocean energy transport. This diverges energy equatorward of the Pacific storm track, further weakening it. Our results show aerosols are a dominant driver of regional circulation weakening during the NH summertime in the satellite era and a regional energetic framework explaining the underlying processes.

Abstract Image

在卫星时代,人为气溶胶显著削弱了北半球的区域夏季环流
再分析数据显示,卫星时代北半球中纬度夏季环流明显减弱,对地表极端天气产生了影响。最近的研究表明,这种减弱并没有受到北极变化的显著影响,但没有研究气溶胶等不同人为作用力的作用。在此,我们利用探测和归因模式相互比较项目(DAMIP)模拟来量化人为气溶胶和温室气体强迫的影响。DAMIP 模拟显示,气溶胶和温室气体对带状平均环流减弱的作用相当。从区域来看,气溶胶主导了太平洋风暴道的减弱,而温室气体则主导了大西洋风暴道的减弱。利用区域能量框架,我们说明了为什么气溶胶对太平洋的影响最大。欧亚大陆和北美上空硫酸盐气溶胶排放的减少增加了(晴空)表面短波辐射和湍流通量。这增强了陆地到海洋的能量对比,并通过静止环流向海洋输送能量。因此,能量向海洋风暴轨迹的极地汇聚,要求较弱的极地能量传输风暴轨迹,风暴轨迹减弱。由于欧亚大陆的排放量减少幅度大于北美洲,太平洋地区受到的影响更大。南亚和东亚上空气溶胶排放量的增加减少了短波辐射,削弱了从陆地到海洋的能量传输。这使太平洋风暴轨道的能量向赤道偏移,进一步削弱了风暴轨道。我们的研究结果表明,气溶胶是卫星时代北半球夏季区域环流减弱的主要驱动因素,也是解释基本过程的区域能量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信