{"title":"Port governance and sustainable development: The impact of port smartization on port carbon emission efficiency","authors":"Chaohui Zhang , Yuxue Yang , Nianxin Wang","doi":"10.1016/j.ocecoaman.2024.107485","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the growing volume of seaborne trade worldwide, most ports need smart policies to address high carbon emissions. As a major shipping nation, China is committed to reducing port carbon emissions. China recently introduced a series of smartization policies to accelerate the construction of smart ports, but their effectiveness in energy saving and emission reduction is unclear. Taking 39 major ports in China as research subjects, this study uses the super-efficiency SBM model to measure carbon emissions and the generalized difference-in-differences method to deeply explore the impact of port smartization policies on port carbon emission efficiency. Results indicate that these policies have significantly improved the carbon emission efficiency of ports, a conclusion validated through multiple robustness tests. Heterogeneity analyses show that ports in coastal areas, and in cities with larger populations or moderate economic development, are more significantly affected by port smartization initiatives. Mechanism analysis suggests that the number of port berths, the length of wharves, and container throughput are important channels through which smart port policies influence carbon emission efficiency. This research enriches carbon emission efficiency literature, offers insights for developing countries on reducing emissions and achieving carbon neutrality, and provides a basis for China's smart port construction.</div></div>","PeriodicalId":54698,"journal":{"name":"Ocean & Coastal Management","volume":"259 ","pages":"Article 107485"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean & Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964569124004708","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the growing volume of seaborne trade worldwide, most ports need smart policies to address high carbon emissions. As a major shipping nation, China is committed to reducing port carbon emissions. China recently introduced a series of smartization policies to accelerate the construction of smart ports, but their effectiveness in energy saving and emission reduction is unclear. Taking 39 major ports in China as research subjects, this study uses the super-efficiency SBM model to measure carbon emissions and the generalized difference-in-differences method to deeply explore the impact of port smartization policies on port carbon emission efficiency. Results indicate that these policies have significantly improved the carbon emission efficiency of ports, a conclusion validated through multiple robustness tests. Heterogeneity analyses show that ports in coastal areas, and in cities with larger populations or moderate economic development, are more significantly affected by port smartization initiatives. Mechanism analysis suggests that the number of port berths, the length of wharves, and container throughput are important channels through which smart port policies influence carbon emission efficiency. This research enriches carbon emission efficiency literature, offers insights for developing countries on reducing emissions and achieving carbon neutrality, and provides a basis for China's smart port construction.
期刊介绍:
Ocean & Coastal Management is the leading international journal dedicated to the study of all aspects of ocean and coastal management from the global to local levels.
We publish rigorously peer-reviewed manuscripts from all disciplines, and inter-/trans-disciplinary and co-designed research, but all submissions must make clear the relevance to management and/or governance issues relevant to the sustainable development and conservation of oceans and coasts.
Comparative studies (from sub-national to trans-national cases, and other management / policy arenas) are encouraged, as are studies that critically assess current management practices and governance approaches. Submissions involving robust analysis, development of theory, and improvement of management practice are especially welcome.