Han Liu , Hairui Bai , Yibo Zhou , Ping Li , Wenyan Su , Chang Liu , Xunfan Liao , Bohao Song , Xiong Li , Zhaozhao Bi , Chao Zhao , Hongtao Liu , Guanghao Lu , Huiling Du , Long Jiang , Yuhang Liu , Ruijie Ma , Wei Ma , Qunping Fan
{"title":"Brominated isomerization engineering of 1-chloronaphthalene derived solid additives enables 19.68% efficiency organic solar cells","authors":"Han Liu , Hairui Bai , Yibo Zhou , Ping Li , Wenyan Su , Chang Liu , Xunfan Liao , Bohao Song , Xiong Li , Zhaozhao Bi , Chao Zhao , Hongtao Liu , Guanghao Lu , Huiling Du , Long Jiang , Yuhang Liu , Ruijie Ma , Wei Ma , Qunping Fan","doi":"10.1016/j.mser.2024.100879","DOIUrl":null,"url":null,"abstract":"<div><div>Using halogenated additive to optimize the active layer morphology has been proven effective in boosting the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the halogenated isomerism of solid additives, which finely tunes blend morphology, has been understudied, with the associated mechanisms requiring further investigation. Herein, a brominated isomerization engineering using 1-chloronaphthalene (CN)-derived solid additives (2-bromo-1-chloronaphthalene/<em>o</em>-BrCN, 3-bromo-1-chloronaphthalene/<em>m</em>-BrCN, and 4-bromo-1-chloronaphthalene/<em>p</em>-BrCN, respectively) is firstly developed. Among these, <em>p</em>-BrCN, with symmetrically halogenated positions, exhibits a small dipole moment, facilitating an extraordinary non-covalent interaction with both donor and acceptor components. Consequently, the <em>p</em>-BrCN-treated active layer obtains better molecular crystallinity, π-π stacking, and phase separation, helping to improve the exciton dissociation and charge transport of OSCs. Ultimately, the <em>p</em>-BrCN-treated OSC based on PM6:L8-BO offers a higher PCE (18.18%) compared to those treated with <em>o</em>-BrCN (17.89%) and <em>m</em>-BrCN (17.39%). Remarkably, the <em>p</em>-BrCN-treated OSCs based on D18:L8-BO and D18:L8-BO:BTP-eC9 further improve PCEs to 19.14% and 19.68%, placing them among the highest values for binary and ternary OSCs, respectively. This work highlights that brominated isomerization engineering in CN-derived additives is a promising strategy to optimize morphology for obtaining efficient OSCs, and elucidates the underlying mechanism.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100879"},"PeriodicalIF":31.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using halogenated additive to optimize the active layer morphology has been proven effective in boosting the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the halogenated isomerism of solid additives, which finely tunes blend morphology, has been understudied, with the associated mechanisms requiring further investigation. Herein, a brominated isomerization engineering using 1-chloronaphthalene (CN)-derived solid additives (2-bromo-1-chloronaphthalene/o-BrCN, 3-bromo-1-chloronaphthalene/m-BrCN, and 4-bromo-1-chloronaphthalene/p-BrCN, respectively) is firstly developed. Among these, p-BrCN, with symmetrically halogenated positions, exhibits a small dipole moment, facilitating an extraordinary non-covalent interaction with both donor and acceptor components. Consequently, the p-BrCN-treated active layer obtains better molecular crystallinity, π-π stacking, and phase separation, helping to improve the exciton dissociation and charge transport of OSCs. Ultimately, the p-BrCN-treated OSC based on PM6:L8-BO offers a higher PCE (18.18%) compared to those treated with o-BrCN (17.89%) and m-BrCN (17.39%). Remarkably, the p-BrCN-treated OSCs based on D18:L8-BO and D18:L8-BO:BTP-eC9 further improve PCEs to 19.14% and 19.68%, placing them among the highest values for binary and ternary OSCs, respectively. This work highlights that brominated isomerization engineering in CN-derived additives is a promising strategy to optimize morphology for obtaining efficient OSCs, and elucidates the underlying mechanism.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.