Luhui Zhang , Xinpei Sun , Jianwen Ye , QianQian Yuan , Xin Zhang , Fei Sun , Yongpan An , Yutong Chen , Yuehui Qian , Daqian Yang , Qian Wang , Miaomiao Gao , Tao Chen , Hongwu Ma , Guoqiang Chen , Zhengwei Xie
{"title":"Reconstruction and analyses of genome-scale halomonas metabolic network yield a highly efficient PHA production","authors":"Luhui Zhang , Xinpei Sun , Jianwen Ye , QianQian Yuan , Xin Zhang , Fei Sun , Yongpan An , Yutong Chen , Yuehui Qian , Daqian Yang , Qian Wang , Miaomiao Gao , Tao Chen , Hongwu Ma , Guoqiang Chen , Zhengwei Xie","doi":"10.1016/j.mec.2024.e00251","DOIUrl":null,"url":null,"abstract":"<div><div>In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with <em>Halomonas bluephagenesis</em> TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates (PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of <em>H. bluephagenesis</em> TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) framework to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored to different fermentation stages. This integrated approach yielded remarkable results, with fermentation culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our findings exemplify the powerful potential of system-level tools in the design and optimization of industrial microorganisms, paving the way for more efficient and sustainable bio-based processes.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00251"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with Halomonas bluephagenesis TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates (PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of H. bluephagenesis TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) framework to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored to different fermentation stages. This integrated approach yielded remarkable results, with fermentation culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our findings exemplify the powerful potential of system-level tools in the design and optimization of industrial microorganisms, paving the way for more efficient and sustainable bio-based processes.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.