Shengdong Tang , Rui Sun , Yifan He , Guichang Liu , Ruixuan Wang , Yuqin Liu , Chengying Tang
{"title":"Machine learning assisted design and preparation of Fe85Si2B8.5P3.5C1 amorphous/nanocrystalline alloy with high Bs and low Hc","authors":"Shengdong Tang , Rui Sun , Yifan He , Guichang Liu , Ruixuan Wang , Yuqin Liu , Chengying Tang","doi":"10.1016/j.matdes.2024.113461","DOIUrl":null,"url":null,"abstract":"<div><div>Four machine learning (ML) models including eXtreme Gradient boosting (XGBT), <em>k</em>-Nearest Neighbor (<em>k</em>NN), Gradient Boosting Decision Tree (GBDT) and Artificial Neural Network (ANN) were employed to predict saturation flux density (<em>B<sub>s</sub></em>), coercivity (<em>H<sub>c</sub></em>), grain size, magnetostriction (<em>λ</em>), and Curie temperature (<em>T<sub>c</sub></em>) of Fe-based amorphous/nanocrystalline alloys. To maximize predictive ability of ML models, grid-search and normalization were used to search the most proper parameters of ML and pre-process raw data, respectively. XGBT had best predictive and generalization ability for predicting <em>B<sub>s</sub></em> and <em>H<sub>c</sub></em> with coefficient of determination (R<sup>2</sup>) of 0.992 and 0.967, respectively. Based on the feature importance analysis from the XGBT model, the Fe<sub>85</sub>Si<sub>2</sub>B<sub>8.5</sub>P<sub>3.5</sub>C<sub>1</sub> amorphous alloy ribbon with good magnetic properties, such as high <em>B<sub>s</sub></em>, low <em>H<sub>c</sub></em>, was designed and prepared by melt spinning. X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), B–H loop tracer, and magnetostriction instrument were used to identify the phase structure and physical properties of the Fe<sub>85</sub>Si<sub>2</sub>B<sub>8.5</sub>P<sub>3.5</sub>C<sub>1</sub> alloy. It was found that the Fe<sub>85</sub>Si<sub>2</sub>B<sub>8.5</sub>P<sub>3.5</sub>C<sub>1</sub> alloy had good magnetic properties with <em>B<sub>s</sub></em> of 1.82 T and the <em>H<sub>c</sub></em> of 2.02 A/m after annealing at 723 K for 180 s, in good agreement with the designed results by machine learning.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113461"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008360","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Four machine learning (ML) models including eXtreme Gradient boosting (XGBT), k-Nearest Neighbor (kNN), Gradient Boosting Decision Tree (GBDT) and Artificial Neural Network (ANN) were employed to predict saturation flux density (Bs), coercivity (Hc), grain size, magnetostriction (λ), and Curie temperature (Tc) of Fe-based amorphous/nanocrystalline alloys. To maximize predictive ability of ML models, grid-search and normalization were used to search the most proper parameters of ML and pre-process raw data, respectively. XGBT had best predictive and generalization ability for predicting Bs and Hc with coefficient of determination (R2) of 0.992 and 0.967, respectively. Based on the feature importance analysis from the XGBT model, the Fe85Si2B8.5P3.5C1 amorphous alloy ribbon with good magnetic properties, such as high Bs, low Hc, was designed and prepared by melt spinning. X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), B–H loop tracer, and magnetostriction instrument were used to identify the phase structure and physical properties of the Fe85Si2B8.5P3.5C1 alloy. It was found that the Fe85Si2B8.5P3.5C1 alloy had good magnetic properties with Bs of 1.82 T and the Hc of 2.02 A/m after annealing at 723 K for 180 s, in good agreement with the designed results by machine learning.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.