Design of transition metal carbide/nitride superlattices with bilayer period-dependent mechanical and thermal properties

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Barbara Schmid , Thomas Schöngruber , Tomasz Wojcik , Bálint Hajas , Eleni Ntemou , Daniel Primetzhofer , Bernhard Fickl , Sarah Christine Bermanschläger , Szilard Kolozsvari , Nikola Koutná , Paul Heinz Mayrhofer
{"title":"Design of transition metal carbide/nitride superlattices with bilayer period-dependent mechanical and thermal properties","authors":"Barbara Schmid ,&nbsp;Thomas Schöngruber ,&nbsp;Tomasz Wojcik ,&nbsp;Bálint Hajas ,&nbsp;Eleni Ntemou ,&nbsp;Daniel Primetzhofer ,&nbsp;Bernhard Fickl ,&nbsp;Sarah Christine Bermanschläger ,&nbsp;Szilard Kolozsvari ,&nbsp;Nikola Koutná ,&nbsp;Paul Heinz Mayrhofer","doi":"10.1016/j.matdes.2024.113432","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal carbides are valued for high hardness, thermal and mechanical stability, but fall short in fracture toughness. Contrarily, their less hard transition metal nitride counterparts offer more favorable fracture characteristics. Here, we use magnetron-sputtering to synthesize nitrides and carbides—TiC/TaN, TiN/TaC—in a nanolaminate superlattice (SL) architecture and compare their properties (hardness, fracture toughness, thermal stability) with that of their layer materials, as well as of carbide SLs, TiC/TaC. Except for the monolithically grown TaN and TiC/TaN SLs with nominal bilayer periods above 14 nm, all other coatings are purely fcc-structured and feature close-to-stoichiometric compositions, revealed by EBS-ERDA and XRF measurements. In-situ X-ray diffraction investigations indicate that the monolithically grown coatings have poor thermal stability compared to the SLs, which remain stable up until well over 1000-°C. While the TiC/TaC superlattices retain the highest hardness of all three systems, with 44.1 ± 3.4 GPa at a bilayer period (<em>Λ</em>) of 2 nm, the TiN/TaC system exhibits significantly higher fracture toughness values with up to 4.75 ± 0.33 MPa√m for the <em>Λ</em> = 14 nm coating. The TiC/TaN system exhibits neither hardness nor fracture toughness enhancement, as explained by the formation of a secondary hexagonal Ta<sub>2</sub>N phase.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113432"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008074","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal carbides are valued for high hardness, thermal and mechanical stability, but fall short in fracture toughness. Contrarily, their less hard transition metal nitride counterparts offer more favorable fracture characteristics. Here, we use magnetron-sputtering to synthesize nitrides and carbides—TiC/TaN, TiN/TaC—in a nanolaminate superlattice (SL) architecture and compare their properties (hardness, fracture toughness, thermal stability) with that of their layer materials, as well as of carbide SLs, TiC/TaC. Except for the monolithically grown TaN and TiC/TaN SLs with nominal bilayer periods above 14 nm, all other coatings are purely fcc-structured and feature close-to-stoichiometric compositions, revealed by EBS-ERDA and XRF measurements. In-situ X-ray diffraction investigations indicate that the monolithically grown coatings have poor thermal stability compared to the SLs, which remain stable up until well over 1000-°C. While the TiC/TaC superlattices retain the highest hardness of all three systems, with 44.1 ± 3.4 GPa at a bilayer period (Λ) of 2 nm, the TiN/TaC system exhibits significantly higher fracture toughness values with up to 4.75 ± 0.33 MPa√m for the Λ = 14 nm coating. The TiC/TaN system exhibits neither hardness nor fracture toughness enhancement, as explained by the formation of a secondary hexagonal Ta2N phase.

Abstract Image

设计具有双层周期机械和热特性的过渡金属碳化物/氮化物超晶格
过渡金属碳化物具有高硬度、热稳定性和机械稳定性,但断裂韧性较差。相反,硬度较低的过渡金属氮化物则具有更有利的断裂特性。在这里,我们使用磁控溅射技术合成了纳米层状超晶格(SL)结构的氮化物和碳化物--TiC/TaN、TiN/TaC,并将它们的特性(硬度、断裂韧性、热稳定性)与它们的层状材料以及碳化物SL--TiC/TaC进行了比较。通过 EBS-ERDA 和 XRF 测量发现,除了单片生长的 TaN 和 TiC/TaN SL 的标称双层周期超过 14 nm 之外,所有其他涂层都是纯 fcc 结构,其成分接近原子序数。原位 X 射线衍射研究表明,与 SL 相比,单片生长涂层的热稳定性较差,而 SL 的热稳定性一直保持到 1000°C 以上。在所有三种体系中,TiC/TaC 超晶格的硬度最高,在双层周期 (Λ)为 2 nm 时为 44.1 ± 3.4 GPa,而 TiN/TaC 体系的断裂韧性值明显更高,在Λ = 14 nm 涂层中高达 4.75 ± 0.33 MPa√m。TiC/TaN体系既没有提高硬度,也没有提高断裂韧性,原因是形成了次生六方Ta2N相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信