Kiman Silas , Habiba D. Mohammed , Thlama Mperiju Mainta , Mohammed Modu Aji , Jerome Undiandeye
{"title":"Optimization and kinetic study of glucose production from agricultural waste","authors":"Kiman Silas , Habiba D. Mohammed , Thlama Mperiju Mainta , Mohammed Modu Aji , Jerome Undiandeye","doi":"10.1016/j.meaene.2024.100026","DOIUrl":null,"url":null,"abstract":"<div><div><strong>A</strong>gricultural waste consisting of sugarcane bagasse (SB), cassava peels (RH) and rice husk (RH) were characterized in this study by EDXRF, SEM/EDX, XRD, FTIR, proximate and ultimate analyses. The SB waste showed the highest potential for glucose yield production and was utilized in a Response Surface Methodology (RSM) optimization and kinetic study of enzymatic hydrolysis using isolated <em>Aspergillus niger</em>. An optimized glucose yield of maximum concentration of 92.522 mg/mL was achieved under specific conditions such as time (55.3 min), pH (4.4) and biomass (0.89g). In the kinetic study, the enzymic hydrolysis obeyed the Michaelis-Menten kinetic model, the V<sub>max</sub> value was measured at 1.06 mg/mL/h, indicating the maximum rate of reaction achievable under the given experimental conditions. Additionally, the K<sub>M</sub> (0.28), representing the substrate concentration at which the reaction rate is half of V<sub>max</sub>. This study demonstrates the potential of agricultural waste, as efficient biofuel feedstocks, achieving high glucose yields through optimized enzymatic hydrolysis, crucial for advancing sustainable bioenergy production.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"4 ","pages":"Article 100026"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural waste consisting of sugarcane bagasse (SB), cassava peels (RH) and rice husk (RH) were characterized in this study by EDXRF, SEM/EDX, XRD, FTIR, proximate and ultimate analyses. The SB waste showed the highest potential for glucose yield production and was utilized in a Response Surface Methodology (RSM) optimization and kinetic study of enzymatic hydrolysis using isolated Aspergillus niger. An optimized glucose yield of maximum concentration of 92.522 mg/mL was achieved under specific conditions such as time (55.3 min), pH (4.4) and biomass (0.89g). In the kinetic study, the enzymic hydrolysis obeyed the Michaelis-Menten kinetic model, the Vmax value was measured at 1.06 mg/mL/h, indicating the maximum rate of reaction achievable under the given experimental conditions. Additionally, the KM (0.28), representing the substrate concentration at which the reaction rate is half of Vmax. This study demonstrates the potential of agricultural waste, as efficient biofuel feedstocks, achieving high glucose yields through optimized enzymatic hydrolysis, crucial for advancing sustainable bioenergy production.