Karthikeyan Rajan , Duygu Kocaefe , Yasar Kocaefe , Jonathan Bernier , Yoann Robert , Yves Dargis
{"title":"Effects of the surface properties and particle size of hydrated lime on desulfurization","authors":"Karthikeyan Rajan , Duygu Kocaefe , Yasar Kocaefe , Jonathan Bernier , Yoann Robert , Yves Dargis","doi":"10.1016/j.clema.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><div>In the gas treatment center in smelters, hydrogen fluoride (HF) is separated from the outlet gases of electrolysis cells, which are used to produce aluminum from alumina. However, SO<sub>2</sub> largely remains in the effluent gas. Another method has to be developed to separate this gas which is harmful to the environment. In this study, semi-dry desulfurization of a SO<sub>2</sub> containing gas was performed at low SO<sub>2</sub> concentrations using hydrated lime [Ca(OH)<sub>2</sub>] as a catalytic desulfurizer under specific humidity conditions. The low reaction temperature of 100 °C and minimal use of the Ca-based desulfurizer under 17 % relative humidity achieved more than 95 % removal of SO<sub>2</sub>. The morphological changes and presence of sulfur in different lime samples were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Brunauer–Emmett–Teller (BET) analysis showed changes in the surface properties of hydrated lime after desulfurization. X-ray photoelectron spectroscopy (XPS) analysis provided the phase and composition identification of the sulfur species on hydrated lime and the CaSO<sub>3</sub>/CaSO<sub>4</sub> product ratio. Based on the experimental results, the optimum catalyst surface area with a specific particle size is critical to the effective conversion of Ca(OH)<sub>2</sub> into CaSO<sub>3</sub> and CaSO<sub>4</sub>. The practicality of a Ca-based desulfurizer and its ability to convert into the required product may be the key to reducing the overall cost of desulfurization in aluminum industry.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100278"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the gas treatment center in smelters, hydrogen fluoride (HF) is separated from the outlet gases of electrolysis cells, which are used to produce aluminum from alumina. However, SO2 largely remains in the effluent gas. Another method has to be developed to separate this gas which is harmful to the environment. In this study, semi-dry desulfurization of a SO2 containing gas was performed at low SO2 concentrations using hydrated lime [Ca(OH)2] as a catalytic desulfurizer under specific humidity conditions. The low reaction temperature of 100 °C and minimal use of the Ca-based desulfurizer under 17 % relative humidity achieved more than 95 % removal of SO2. The morphological changes and presence of sulfur in different lime samples were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Brunauer–Emmett–Teller (BET) analysis showed changes in the surface properties of hydrated lime after desulfurization. X-ray photoelectron spectroscopy (XPS) analysis provided the phase and composition identification of the sulfur species on hydrated lime and the CaSO3/CaSO4 product ratio. Based on the experimental results, the optimum catalyst surface area with a specific particle size is critical to the effective conversion of Ca(OH)2 into CaSO3 and CaSO4. The practicality of a Ca-based desulfurizer and its ability to convert into the required product may be the key to reducing the overall cost of desulfurization in aluminum industry.