Zheran Zhai , Siyao Liu , Zimeng Li , Ruijie Ma , Xiaoyu Ge , Haidong Feng , Yang Shi , Chen Gu
{"title":"The spatiotemporal distribution patterns and impact factors of bird species richness: A case study of urban built-up areas in Beijing, China","authors":"Zheran Zhai , Siyao Liu , Zimeng Li , Ruijie Ma , Xiaoyu Ge , Haidong Feng , Yang Shi , Chen Gu","doi":"10.1016/j.ecolind.2024.112847","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the distribution patterns of bird species in urban built-up areas and their impact factors from multiple dimensions, including spatiotemporal distribution, environmental changes, and anthropogenic disturbances, as well as overall distribution and local hotspots. Leveraging geographic distribution data of 383 bird species from 70 families and 21 orders, the study recorded dynamic changes in bird distribution within urban built-up areas characterized by highly heterogeneous core areas and suburban areas. It examined species distribution across different seasons and land cover types, evaluated population fluctuations based on migratory behaviors, and assessed the relative abundance of bird families and species in hotspot areas. Additionally, this study employed three tree-based machine learning algorithms—Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—to investigate the influence of environmental factors on bird species distribution within urban built-up areas. The findings showed that, temporally, the number of observed bird species in the study area peaked in May and September, while the lowest numbers of species (54.83 %) and individuals (5.45 %) were recorded during the high-temperature period from June to August. Spatially, (1) woodlands, including stable mature forests, unstable juvenile forests, and sparse vegetation, recorded the highest frequencies of bird observations (2,053 times), bird species (369 species), and bird individuals (38,623 individuals); (2) comprehensive parks, where bird species demonstrated higher adaptability to anthropogenic disturbances, experienced a more significant decline in species richness compared to country parks; and (3) the number of bird species in hotspot areas located in the core areas, which developed earlier, has decreased annually, while the number of species in suburban areas, which developed later, has increased annually. In terms of impact factors, water area (WA), point of interest kernel density (DPOI), relative humidity (RH), green space area (GSA), and nighttime light pollution (NL) were identified as the five most important environmental factors affecting bird species richness. These results suggest that although birds exhibit some adaptability to environmental changes and anthropogenic disturbances, species distribution remains significantly impacted. This research aims to provide a planning framework for future urban development that promotes biodiversity and adaptability, thereby bolstering the resilience of urban ecosystems.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112847"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24013049","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the distribution patterns of bird species in urban built-up areas and their impact factors from multiple dimensions, including spatiotemporal distribution, environmental changes, and anthropogenic disturbances, as well as overall distribution and local hotspots. Leveraging geographic distribution data of 383 bird species from 70 families and 21 orders, the study recorded dynamic changes in bird distribution within urban built-up areas characterized by highly heterogeneous core areas and suburban areas. It examined species distribution across different seasons and land cover types, evaluated population fluctuations based on migratory behaviors, and assessed the relative abundance of bird families and species in hotspot areas. Additionally, this study employed three tree-based machine learning algorithms—Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—to investigate the influence of environmental factors on bird species distribution within urban built-up areas. The findings showed that, temporally, the number of observed bird species in the study area peaked in May and September, while the lowest numbers of species (54.83 %) and individuals (5.45 %) were recorded during the high-temperature period from June to August. Spatially, (1) woodlands, including stable mature forests, unstable juvenile forests, and sparse vegetation, recorded the highest frequencies of bird observations (2,053 times), bird species (369 species), and bird individuals (38,623 individuals); (2) comprehensive parks, where bird species demonstrated higher adaptability to anthropogenic disturbances, experienced a more significant decline in species richness compared to country parks; and (3) the number of bird species in hotspot areas located in the core areas, which developed earlier, has decreased annually, while the number of species in suburban areas, which developed later, has increased annually. In terms of impact factors, water area (WA), point of interest kernel density (DPOI), relative humidity (RH), green space area (GSA), and nighttime light pollution (NL) were identified as the five most important environmental factors affecting bird species richness. These results suggest that although birds exhibit some adaptability to environmental changes and anthropogenic disturbances, species distribution remains significantly impacted. This research aims to provide a planning framework for future urban development that promotes biodiversity and adaptability, thereby bolstering the resilience of urban ecosystems.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.