The Rudin-Kiesler pre-order and the Pixley-Roy spaces over ultrafilters

IF 0.6 4区 数学 Q3 MATHEMATICS
Masami Sakai
{"title":"The Rudin-Kiesler pre-order and the Pixley-Roy spaces over ultrafilters","authors":"Masami Sakai","doi":"10.1016/j.topol.2024.109136","DOIUrl":null,"url":null,"abstract":"<div><div>For a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space <em>X</em>, we denote by <span><math><mi>P</mi><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> the Pixley-Roy space over <em>X</em>. For <span><math><mi>p</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>p</mi><mo>}</mo><mo>∪</mo><mi>ω</mi></math></span> be the subspace of the Stone-Čech compactification <em>βω</em> of the discrete space <em>ω</em>. Motivated by Gul'ko's theorem (<span><span>Theorem 1.1</span></span>), we show: (1) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are homeomorphic if and only if <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic (i.e., <em>p</em> and <em>q</em> are type-equivalent), (2) if <em>q</em> is selective and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be embedded into <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic, (3) if <em>p</em> is selective, then <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> contains copies of some <span><math><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></math></span> which are pairwise non-homeomorphic, and (4) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> are pairwise non-homeomorphic, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the quotient space obtained by identifying the limit points of the topological sum <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109136"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003213","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a T1-space X, we denote by PR(X) the Pixley-Roy space over X. For pω, let Xp={p}ω be the subspace of the Stone-Čech compactification βω of the discrete space ω. Motivated by Gul'ko's theorem (Theorem 1.1), we show: (1) PR(Xp) and PR(Xq) are homeomorphic if and only if Xp and Xq are homeomorphic (i.e., p and q are type-equivalent), (2) if q is selective and Xq can be embedded into PR(Xp), then Xp and Xq are homeomorphic, (3) if p is selective, then PR(Xp) contains copies of some Xqn(nN) which are pairwise non-homeomorphic, and (4) PR(Xp),PR(XpXp) and PR(XpXp) are pairwise non-homeomorphic, where XpXp is the quotient space obtained by identifying the limit points of the topological sum XpXp.
超滤波器上的鲁丁-基斯勒前序和皮克斯利-罗伊空间
对于 T1 空间 X,我们用 PR(X) 表示 X 上的 Pixley-Roy 空间。对于 p∈ω⁎,让 Xp={p}∪ω 是离散空间 ω 的 Stone-Čech compactification βω 的子空间。受 Gul'ko 定理(定理 1.1)的启发,我们证明: (1) 当且仅当 Xp 和 Xq 是同构时,PR(Xp) 和 PR(Xq) 是同构的(即、(2) 如果 q 是选择性的,且 Xq 可以嵌入 PR(Xp),则 Xp 和 Xq 是同构的;(3) 如果 p 是选择性的,则 PR(Xp) 包含某些 Xqn(n∈N) 的副本,这些副本成对地是非同构的、(4) PR(Xp)、PR(Xp⊕Xp) 和 PR(Xp⁎Xp) 成对非同构,其中 Xp⁎Xp 是通过识别拓扑和 Xp⊕Xp 的极限点得到的商空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信