A comprehensive analysis of structural, electronic, optical, mechanical, thermodynamic, and thermoelectric properties of direct band gap Sr3BF3 (B = As, Sb) photovoltaic compounds: DFT-GGA and mBJ approach

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Muneef Hasan , Adil Hossain , Heider A. Abdulhussein , Abdullah Al Shadi , Bijoy Sorker , Ahmed Adnan Al-Khafagi , Redi Kristian Pingak , Diana Dahliah , Mohammed S. Abu-Jafar , Asif Hosen
{"title":"A comprehensive analysis of structural, electronic, optical, mechanical, thermodynamic, and thermoelectric properties of direct band gap Sr3BF3 (B = As, Sb) photovoltaic compounds: DFT-GGA and mBJ approach","authors":"Muneef Hasan ,&nbsp;Adil Hossain ,&nbsp;Heider A. Abdulhussein ,&nbsp;Abdullah Al Shadi ,&nbsp;Bijoy Sorker ,&nbsp;Ahmed Adnan Al-Khafagi ,&nbsp;Redi Kristian Pingak ,&nbsp;Diana Dahliah ,&nbsp;Mohammed S. Abu-Jafar ,&nbsp;Asif Hosen","doi":"10.1016/j.inoche.2024.113607","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the physical properties of lead-free Sr<sub>3</sub>BF<sub>3</sub> (B = As, Sb) photovoltaic compounds including structural, electronic, mechanical, optical, thermodynamic, and thermoelectric behavior using calculations based on DFT approach. Born stability criteria and formation enthalpy estimates show that the compounds under study are mechanically and thermodynamically stable. The initial lattice constants for Sr<sub>3</sub>AsF<sub>3</sub> and Sr<sub>3</sub>SbF<sub>3</sub> were determined to be 5.71 Å and 5.97 Å, respectively. While simulating the compounds under pressure, lattice constants, cell volumes, and bond lengths decrease. The band structure investigation shows that these compounds are semiconducting with an adjustable direct bandgap. The electronic band gap contracts by pressure, shifting the material from ultraviolet to the visible spectrum. This modification enhances electron transition from valence band maxima to conduction band minima, enhancing optical efficiency. The shift and rise in ductility and machinability index under pressure ensures good lubrication, low friction, and significant plastic deformation suitable for many industrial applications. Simultaneously, the static dielectric constant increases, increasing absorption and conductivity and red-shifting the optical spectrum, and reducing reflectivity in the visible spectrum. The thermodynamic behavior of the compounds was affected by both pressure and temperature variation. The thermoelectric figure of merit becomes closer to unity with a shorter band gap, indicating increased efficiency. Our findings suggest that Sr<sub>3</sub>BF<sub>3</sub> (B = As, Sb) photovoltaic compounds could be used for the invention of next-generation solar cells and thermoelectric devices.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113607"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015971","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the physical properties of lead-free Sr3BF3 (B = As, Sb) photovoltaic compounds including structural, electronic, mechanical, optical, thermodynamic, and thermoelectric behavior using calculations based on DFT approach. Born stability criteria and formation enthalpy estimates show that the compounds under study are mechanically and thermodynamically stable. The initial lattice constants for Sr3AsF3 and Sr3SbF3 were determined to be 5.71 Å and 5.97 Å, respectively. While simulating the compounds under pressure, lattice constants, cell volumes, and bond lengths decrease. The band structure investigation shows that these compounds are semiconducting with an adjustable direct bandgap. The electronic band gap contracts by pressure, shifting the material from ultraviolet to the visible spectrum. This modification enhances electron transition from valence band maxima to conduction band minima, enhancing optical efficiency. The shift and rise in ductility and machinability index under pressure ensures good lubrication, low friction, and significant plastic deformation suitable for many industrial applications. Simultaneously, the static dielectric constant increases, increasing absorption and conductivity and red-shifting the optical spectrum, and reducing reflectivity in the visible spectrum. The thermodynamic behavior of the compounds was affected by both pressure and temperature variation. The thermoelectric figure of merit becomes closer to unity with a shorter band gap, indicating increased efficiency. Our findings suggest that Sr3BF3 (B = As, Sb) photovoltaic compounds could be used for the invention of next-generation solar cells and thermoelectric devices.

Abstract Image

全面分析直接带隙 Sr3BF3(B = As、Sb)光伏化合物的结构、电子、光学、机械、热力学和热电特性:DFT-GGA 和 mBJ 方法
本研究采用基于 DFT 方法的计算,评估了无铅 Sr3BF3(B = As、Sb)光伏化合物的物理性质,包括结构、电子、机械、光学、热力学和热电行为。博恩稳定性标准和形成焓估算表明,所研究的化合物在机械和热力学上都是稳定的。Sr3AsF3 和 Sr3SbF3 的初始晶格常数分别为 5.71 Å 和 5.97 Å。在压力下模拟这些化合物时,晶格常数、晶胞体积和键长都会减小。带状结构研究表明,这些化合物是具有可调直接带隙的半导体。电子带隙在压力作用下收缩,使材料从紫外光谱转移到可见光谱。这种改变增强了电子从价带最大值向导带最小值的转变,从而提高了光学效率。在压力作用下,延展性和可加工性指数的变化和上升确保了良好的润滑性、低摩擦性和显著的塑性变形,适合许多工业应用。同时,静态介电常数增大,增加了吸收和传导性,使光学光谱发生红移,并降低了可见光谱的反射率。化合物的热力学行为受到压力和温度变化的影响。带隙越短,热电功勋值越接近于 1,表明效率越高。我们的研究结果表明,Sr3BF3(B = As、Sb)光伏化合物可用于发明下一代太阳能电池和热电设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信