Generalized Bell polynomials

IF 0.9 3区 数学 Q2 MATHEMATICS
Antonio J. Durán
{"title":"Generalized Bell polynomials","authors":"Antonio J. Durán","doi":"10.1016/j.jat.2024.106121","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, generalized Bell polynomials <span><math><msub><mrow><mrow><mo>(</mo><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> associated to a sequence of real numbers <span><math><mrow><mi>ϕ</mi><mo>=</mo><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> are introduced. Bell polynomials correspond to <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We prove that when <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>: (a) the zeros of the generalized Bell polynomial <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> are simple, real and non positive; (b) the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> interlace the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span>; (c) the zeros are decreasing functions of the parameters <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"306 ","pages":"Article 106121"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, generalized Bell polynomials (bnϕ)n associated to a sequence of real numbers ϕ=(ϕi)i=1 are introduced. Bell polynomials correspond to ϕi=0, i1. We prove that when ϕi0, i1: (a) the zeros of the generalized Bell polynomial bnϕ are simple, real and non positive; (b) the zeros of bn+1ϕ interlace the zeros of bnϕ; (c) the zeros are decreasing functions of the parameters ϕi. We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.
广义贝尔多项式
本文介绍了与实数序列 ϕ=(ϕi)i=1∞ 相关的广义贝尔多项式 (bnj)n。我们证明了当ϕi≥0,i≥1 时:(a)广义贝尔多项式 bnj 的零点是简单、实且非正的;(b)bn+1j 的零点与 bnj 的零点交错;(c)零点是参数ϕi 的递减函数。我们找到了广义贝尔多项式的超几何表示。因此,我们证明了所有广义贝尔多项式的类别实际上与所有拉盖尔第一类多重多项式的类别相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信