Fabio Hernández-Ramos , Bruno Esteves , Luísa Carvalho , Jalel Labidi , Xabier Erdocia
{"title":"Synthesis, characterisation, and thermal degradation kinetics of lignin-based polyurethane wood adhesives","authors":"Fabio Hernández-Ramos , Bruno Esteves , Luísa Carvalho , Jalel Labidi , Xabier Erdocia","doi":"10.1016/j.ijadhadh.2024.103889","DOIUrl":null,"url":null,"abstract":"<div><div>Polyurethane adhesives are widely employed in a range of industrial applications due to their exceptional bonding strength, flexibility, and chemical resistance. These materials play a crucial role in wood bonding technologies, where their versatility and durability make them ideal for creating strong, long-lasting joints. In this work, Four different polyurethane wood adhesives were synthesised using ligno-based bio-polyols obtained through microwave assisted liquefaction reaction of two wood species (hardwood and softwood) using polyethylene glycol and glycerol as solvents. The reaction conditions used for the synthesis of bio-polyols were optimised in a previous work. The synthesis of polyurethanes was carried out by one-shot method using Tetrahydrofuran (THF) as solvent and MDI as diisocyanate employing different NCO:OH ratios (2.0:1, 2.5:1, and 3.0:1). The chemical structure of polyurethanes was determined through ATR-FTIR and the shear strength was analysed using Automated Bonding Evaluation System (ABES) employing beech veneer strips. Through ABES it was concluded that an NCO:OH ratio of 2.5:1 was the formulation that showed the best shear strength for a pressing time of 120 s. Employing this ratio and the same synthesis procedure, two new polyurethanes were synthesised with the bio-polyols obtained using crude glycerol instead commercial glycerol. Finally, a study of thermal degradation kinetics employing the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) isoconversional methods of the polyurethanes synthesised with an NCO:OH ratio of 2.5:1 was carried out. On the one hand, the E<sub>a</sub> of each system were estimated for the different α ratios, obtaining slightly higher values for the adhesives produced using commercial glycerol than crude glycerol. In addition, the pre-exponential factor was determined, enabling an estimation of the lifetime of the polymers. This study highlights demonstrated that crude glycerol could replace commercial glycerol without compromising adhesive properties. The findings revealed that the lignin source significantly influences the adhesive's characteristics and stability, while addressing challenges in achieving industrial viability remains essential for broader application.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"136 ","pages":"Article 103889"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624002719","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethane adhesives are widely employed in a range of industrial applications due to their exceptional bonding strength, flexibility, and chemical resistance. These materials play a crucial role in wood bonding technologies, where their versatility and durability make them ideal for creating strong, long-lasting joints. In this work, Four different polyurethane wood adhesives were synthesised using ligno-based bio-polyols obtained through microwave assisted liquefaction reaction of two wood species (hardwood and softwood) using polyethylene glycol and glycerol as solvents. The reaction conditions used for the synthesis of bio-polyols were optimised in a previous work. The synthesis of polyurethanes was carried out by one-shot method using Tetrahydrofuran (THF) as solvent and MDI as diisocyanate employing different NCO:OH ratios (2.0:1, 2.5:1, and 3.0:1). The chemical structure of polyurethanes was determined through ATR-FTIR and the shear strength was analysed using Automated Bonding Evaluation System (ABES) employing beech veneer strips. Through ABES it was concluded that an NCO:OH ratio of 2.5:1 was the formulation that showed the best shear strength for a pressing time of 120 s. Employing this ratio and the same synthesis procedure, two new polyurethanes were synthesised with the bio-polyols obtained using crude glycerol instead commercial glycerol. Finally, a study of thermal degradation kinetics employing the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) isoconversional methods of the polyurethanes synthesised with an NCO:OH ratio of 2.5:1 was carried out. On the one hand, the Ea of each system were estimated for the different α ratios, obtaining slightly higher values for the adhesives produced using commercial glycerol than crude glycerol. In addition, the pre-exponential factor was determined, enabling an estimation of the lifetime of the polymers. This study highlights demonstrated that crude glycerol could replace commercial glycerol without compromising adhesive properties. The findings revealed that the lignin source significantly influences the adhesive's characteristics and stability, while addressing challenges in achieving industrial viability remains essential for broader application.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.