{"title":"A review on microwave assisted thermal remediation of hydrocarbons contaminated soil: Influential factors, mechanism, and prospective","authors":"Yongxing Zhang, Hui Song, Jafar Zanganeh, Behdad Moghtaderi","doi":"10.1016/j.jece.2024.114726","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides an overview of current research on thermal methods for remediating soil contaminated with petroleum hydrocarbons, with a specific focus on microwave-assisted heating treatment. Initially, it broadly surveys and analyses existing studies on various thermal remediation techniques, in particular thermal desorption, pyrolysis, and incineration. The challenges of high temperatures, prolonged treatment durations, and substantial energy consumption underlying conventional heating methods were therefore summarised. Microwave heating approach was paid paramount attention in current review due to its distinct characteristics and widespread application in many fields, e.g. water treatment, solid waste management, and soil remediation. It offers distinct advantages over traditional thermal treatment methods, especially lower treatment temperatures, higher rates of pollutant recovery, and a very minimal disruption to soil biology. This paper then delves into the application and mechanisms of petroleum removal through microwave-assisted thermal remediation, and influential factors including soil and pollutant properties, the use of microwave-absorbing materials, and the effects of microwave radiation parameters were reviewed consequently. It can be concluded that microwave susceptors, irradiation power, and exposure duration, play crucial roles in optimising pollutant removal efficiency. While the technology offers significant benefits, including reduced energy consumption, a lower carbon footprint, and shorter remediation times, it is predominantly limited to ex situ applications due to constraints related to microwave penetration depth. Future research directions are proposed to enhance the effectiveness and practicality of microwave-assisted remediation in industrial contexts, emphasising the importance of scaling up laboratory findings to real-world scenarios.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114726"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724028586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review provides an overview of current research on thermal methods for remediating soil contaminated with petroleum hydrocarbons, with a specific focus on microwave-assisted heating treatment. Initially, it broadly surveys and analyses existing studies on various thermal remediation techniques, in particular thermal desorption, pyrolysis, and incineration. The challenges of high temperatures, prolonged treatment durations, and substantial energy consumption underlying conventional heating methods were therefore summarised. Microwave heating approach was paid paramount attention in current review due to its distinct characteristics and widespread application in many fields, e.g. water treatment, solid waste management, and soil remediation. It offers distinct advantages over traditional thermal treatment methods, especially lower treatment temperatures, higher rates of pollutant recovery, and a very minimal disruption to soil biology. This paper then delves into the application and mechanisms of petroleum removal through microwave-assisted thermal remediation, and influential factors including soil and pollutant properties, the use of microwave-absorbing materials, and the effects of microwave radiation parameters were reviewed consequently. It can be concluded that microwave susceptors, irradiation power, and exposure duration, play crucial roles in optimising pollutant removal efficiency. While the technology offers significant benefits, including reduced energy consumption, a lower carbon footprint, and shorter remediation times, it is predominantly limited to ex situ applications due to constraints related to microwave penetration depth. Future research directions are proposed to enhance the effectiveness and practicality of microwave-assisted remediation in industrial contexts, emphasising the importance of scaling up laboratory findings to real-world scenarios.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.