{"title":"Visual boiling experimental research based on lateral liquid supply structure","authors":"Fei Li, Guodong Xia, Ran Li","doi":"10.1016/j.ijheatfluidflow.2024.109664","DOIUrl":null,"url":null,"abstract":"<div><div>The high heat transfer coefficient and critical heat flux density of thin liquid film boiling provide new ideas for enhancing boiling heat transfer, but the bottom-up liquid supply method limits its further application and development. This study is based on the experimental research results of previous researchers and adds lateral liquid supply while maintaining a lower liquid level. And thin liquid film boiling experiments were conducted on the surface of silicon under low subcooling conditions (subcooling degree: 5 K). The obtained curves were compared with the results of smooth copper surface in pool boiling experiments. Among them, thin liquid film boiling exhibits excellent HTC and higher CHF (12.26 W/cm<sup>2</sup>·K and 191.63 W/cm<sup>2</sup>, respectively). Then, the bubble behavior and flow characteristics of thin liquid film boiling bubbles were visualized and the heat transfer mechanism was analyzed. The experimental results indicate that the lateral liquid supply boiling structure designed in this study has great potential for application.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"111 ","pages":"Article 109664"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003898","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high heat transfer coefficient and critical heat flux density of thin liquid film boiling provide new ideas for enhancing boiling heat transfer, but the bottom-up liquid supply method limits its further application and development. This study is based on the experimental research results of previous researchers and adds lateral liquid supply while maintaining a lower liquid level. And thin liquid film boiling experiments were conducted on the surface of silicon under low subcooling conditions (subcooling degree: 5 K). The obtained curves were compared with the results of smooth copper surface in pool boiling experiments. Among them, thin liquid film boiling exhibits excellent HTC and higher CHF (12.26 W/cm2·K and 191.63 W/cm2, respectively). Then, the bubble behavior and flow characteristics of thin liquid film boiling bubbles were visualized and the heat transfer mechanism was analyzed. The experimental results indicate that the lateral liquid supply boiling structure designed in this study has great potential for application.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.