ACTF: An efficient lossless compression algorithm for time series floating point data

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weijie Wang , Wenhui Chen , Qinhon Lei , Zhe Li , Huihuang Zhao
{"title":"ACTF: An efficient lossless compression algorithm for time series floating point data","authors":"Weijie Wang ,&nbsp;Wenhui Chen ,&nbsp;Qinhon Lei ,&nbsp;Zhe Li ,&nbsp;Huihuang Zhao","doi":"10.1016/j.jksuci.2024.102246","DOIUrl":null,"url":null,"abstract":"<div><div>The volume of time series data across various fields is steadily increasing. However, this unprocessed massive data challenges transmission efficiency, computational arithmetic, and storage capacity. Therefore, the compression of time series data is essential for improving transmission, computation, and storage. Currently, improving time series floating-point coding rules is the primary method for enhancing compression algorithms efficiency and ratio. This paper presents an efficient lossless compression algorithm for time series floating point data, designed based on existing compression algorithms. We employ three optimization strategies data preprocessing, coding category expansion, and feature refinement representation to enhance the compression ratio and efficiency of compressing time-series floating-point numbers. Through experimental comparisons and validations, we demonstrate that our algorithm outperforms Chimp, Chimp<sub>128</sub>, Gorilla, and other compression algorithms across multiple datasets. The experimental results on 30 datasets show that our algorithm improves the compression ratio of time series algorithms by an average of 12.25% and compression and decompression efficiencies by an average of 27.21%. Notably, it achieves a 24.06% compression ratio improvement on the IOT1 dataset and a 42.96% compression and decompression efficiency improvement on the IOT4 dataset.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102246"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003355","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The volume of time series data across various fields is steadily increasing. However, this unprocessed massive data challenges transmission efficiency, computational arithmetic, and storage capacity. Therefore, the compression of time series data is essential for improving transmission, computation, and storage. Currently, improving time series floating-point coding rules is the primary method for enhancing compression algorithms efficiency and ratio. This paper presents an efficient lossless compression algorithm for time series floating point data, designed based on existing compression algorithms. We employ three optimization strategies data preprocessing, coding category expansion, and feature refinement representation to enhance the compression ratio and efficiency of compressing time-series floating-point numbers. Through experimental comparisons and validations, we demonstrate that our algorithm outperforms Chimp, Chimp128, Gorilla, and other compression algorithms across multiple datasets. The experimental results on 30 datasets show that our algorithm improves the compression ratio of time series algorithms by an average of 12.25% and compression and decompression efficiencies by an average of 27.21%. Notably, it achieves a 24.06% compression ratio improvement on the IOT1 dataset and a 42.96% compression and decompression efficiency improvement on the IOT4 dataset.
ACTF:针对时间序列浮点数据的高效无损压缩算法
各领域的时间序列数据量正在稳步增长。然而,这些未经处理的海量数据对传输效率、计算运算和存储容量提出了挑战。因此,时间序列数据的压缩对于提高传输、计算和存储能力至关重要。目前,改进时间序列浮点编码规则是提高压缩算法效率和压缩比的主要方法。本文在现有压缩算法的基础上,提出了一种高效的时间序列浮点数据无损压缩算法。我们采用了数据预处理、编码类别扩展和特征细化表示三种优化策略,以提高时间序列浮点数的压缩比和压缩效率。通过实验对比和验证,我们证明了我们的算法在多个数据集上优于 Chimp、Chimp128、Gorilla 和其他压缩算法。在 30 个数据集上的实验结果表明,我们的算法将时间序列算法的压缩率平均提高了 12.25%,压缩和解压缩效率平均提高了 27.21%。值得注意的是,它在 IOT1 数据集上提高了 24.06% 的压缩率,在 IOT4 数据集上提高了 42.96% 的压缩和解压缩效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信