Anomaly detection in sensor data via encoding time series into images

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jidong Ma (继东) , Hairu Wang (王海茹)
{"title":"Anomaly detection in sensor data via encoding time series into images","authors":"Jidong Ma (继东) ,&nbsp;Hairu Wang (王海茹)","doi":"10.1016/j.jksuci.2024.102232","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting anomalies in multivariate time series data is crucial for maintaining the optimal functionality of control system equipment. While existing research has made significant strides in this area, the increasing complexity of industrial environments poses challenges in accurately capturing the interactions between variables. Therefore, this paper introduces an innovative anomaly detection approach that extends one-dimensional time series into two-dimensions to capture the spatial correlations within the data. Unlike traditional approaches, we utilize the Gramian Angular Field to encode the correlations between different sensors at specific time points into images, enabling precise learning of spatial information across multiple variables. Subsequently, we construct an adversarial generative model to accurately identify anomalies at the pixel level, facilitating precise localization of abnormal points. We evaluate our method using five open-source datasets from various fields. Our method outperforms state-of-the-art anomaly detection techniques across all datasets, showcasing its superior performance. Particularly, our method achieves a 11.5% increase in F1 score on the high-dimensional WADI dataset compared to the baseline method. Additionally, we conduct thorough effectiveness analysis, parameter impact experiments, significant statistical analysis, and burden analysis, confirming the efficacy of our approach in capturing both the temporal dynamics and spatial relationships inherent in multivariate time series data.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102232"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003215","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting anomalies in multivariate time series data is crucial for maintaining the optimal functionality of control system equipment. While existing research has made significant strides in this area, the increasing complexity of industrial environments poses challenges in accurately capturing the interactions between variables. Therefore, this paper introduces an innovative anomaly detection approach that extends one-dimensional time series into two-dimensions to capture the spatial correlations within the data. Unlike traditional approaches, we utilize the Gramian Angular Field to encode the correlations between different sensors at specific time points into images, enabling precise learning of spatial information across multiple variables. Subsequently, we construct an adversarial generative model to accurately identify anomalies at the pixel level, facilitating precise localization of abnormal points. We evaluate our method using five open-source datasets from various fields. Our method outperforms state-of-the-art anomaly detection techniques across all datasets, showcasing its superior performance. Particularly, our method achieves a 11.5% increase in F1 score on the high-dimensional WADI dataset compared to the baseline method. Additionally, we conduct thorough effectiveness analysis, parameter impact experiments, significant statistical analysis, and burden analysis, confirming the efficacy of our approach in capturing both the temporal dynamics and spatial relationships inherent in multivariate time series data.
通过将时间序列编码成图像来检测传感器数据中的异常情况
检测多变量时间序列数据中的异常情况对于保持控制系统设备的最佳功能至关重要。虽然现有研究在这一领域取得了长足进步,但工业环境的日益复杂性给准确捕捉变量之间的相互作用带来了挑战。因此,本文引入了一种创新的异常检测方法,将一维时间序列扩展到二维,以捕捉数据中的空间相关性。与传统方法不同,我们利用格拉米安角场(Gramian Angular Field)将特定时间点上不同传感器之间的相关性编码成图像,从而实现跨多个变量的空间信息的精确学习。随后,我们构建了一个对抗生成模型,以准确识别像素级别的异常,从而促进异常点的精确定位。我们使用来自不同领域的五个开源数据集对我们的方法进行了评估。在所有数据集上,我们的方法都优于最先进的异常检测技术,展示了其卓越的性能。特别是,与基线方法相比,我们的方法在高维 WADI 数据集上的 F1 分数提高了 11.5%。此外,我们还进行了全面的有效性分析、参数影响实验、重要统计分析和负担分析,证实了我们的方法在捕捉多元时间序列数据中固有的时间动态和空间关系方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信